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I. INTRODUCTION

In history, there have been several famous lenses with 

a spherically symmetric gradient-index profile, including 

Maxwell’s fisheye lens [1], the Luneburg lens [2] and the 

Eaton lens [3]. Maxwell’s fisheye lens possesses the 

refractive-index profile    , where  is the 

radial spherical coordinate (the same below) that can 

perfectly image from one point at the radius distance to the 

opposite point at the radius. The Luneburg lens possesses 

the refractive-index profile   ; light rays will 

be focused on the surface of the Luneburg lens when the 

rays coming from ∞ enter the Luneburg lens, for  . 

The Eaton lens possesses the refractive-index profile 

  ; when light rays of parallel optical axis 

coming from ∞ propagate to the Eaton lens, for   the 

rays leave in the same direction from which they came. 

That is, the rays are retroreflected and rotated by 180°. In 

1964 Luneburg studied spherical gradient-index lenses in 

detail, and developed effective mathematical tools to design 

analogous lenses [2, 4].

In the literature [5], Miñano reported that the Eaton lens 

can be used to design an invisible sphere for rotating rays 

360°. From the deflection angle , he obtained a cubic 

equation in ,   and consequently obtained the 

solution   (with   [5]). The Eaton 

lens rotates rays 180° and Miñano’s lens rotates rays 360°. 

Has any other deflection angle been designed? In fact, a 

lens for rotating 90° can be used for beam splitting, optical 

manufacturing, optical communication, endoscopy, and image 

stabilization.

In a previous paper [6], Sang-Hoon Kim studied a 

90°-rotating Eaton lens (right-bender) with refractive-index 

profile    . Due to the complexity 

of finding the solution, Sang-Hoon Kim only deduced the 

approximate solution ≅, but not the 

analytic solution. Fabrications of the 90° rotating Eaton 

lens were performed [7-9], all based on the equation in the 

literature [6]. However, it was very regrettable that the 

analytic solution still did not appear. Therefore, it is most 

important that the analytic solution should be solved first, 

and that is the mission of this paper.

In this paper, another equation for the Eaton lens with 

rotating 90° was deduced, using Lunebrug theory. We 

found that the equation for the refractive-index profile is a 

fourth-order equation in . The analytic solution of the 
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equation was then found and researched using mathematical 

software (such as Mathematica, MathCAD, or Maple). To 

verify our analytic solution, finite-element analysis (using 

FEA software, such as COMSOL or Ansys) was conducted. 

The simulation proved that our analytic solution of the 

equation was correct.

II. DESIGN OF AN EATON LENS WITH 

ROTATION ANGLE OF 90°

The definition of the rotation angle (or deflection angle) 

  is shown in Fig. 1, which denotes the angle between 

the exit ray and the incident ray. The sign rule for the 

rotation angle is positive for clockwise rotation from the 

starting ray to the ending ray; conversely, negative is for 

anticlockwise direction. Because the incident ray is the 

ending ray and the refractive ray is the starting ray, the 

right-bender of the ray represents the minus sign of the 

anticlockwise direction from the refractive ray to the 

incident ray, as shown in Fig. 1. The refractive index at 

the center of the Eaton lens is greater than that at the 

surface, so the ray should bend rightward toward the 

center of the Eaton.

Now we design an Eaton lens that rotates light 90°. 

Using Luneburg theory, the rotation angle   satisfies the 

following relations:

 , (1)

  , (2)








, (3)

where  and  are only intermediate variables. For the 

rotation angles, we have  ,   , and  ; 

substituting into Eq. (3), we obtain







⇒ 




  . (4)

Eq. (4) is the distribution equation for the refractive- 

index profile needed for the Eaton lens to rotate 90°, 

where  is the radial spherical coordinate and  is the 

distribution of the refractive-index profile.  should be 

solved as a function of , namely  . When solving 

Eq. (4),  is treated as a constant. In fact, by squaring both 

sides of     the same equation 

can be obtained.

It is somewhat complicated to solve Eq. (4) for  , 

which is a fourth-order equation in . One can solve it by 

referring to a mathematical dictionary in which the ready- 

made solutions of some special fourth-order equations are 

listed. Nevertheless, it is not an easy thing to do. In fact, 

we have a strong tool for doing so, which is mathematical 

software such as Mathematica, MathCAD, or Maple. For 

analytic solutions, we use mathematical software to research 

Eq. (4). For example, in Mathematica one can apply the 

command line “Solve [   ]” to solve for 

the roots of Eq. (4) in . The four roots of Eq. (4) are 

solved for, of which we found that three roots should be 

dropped, and only one root remains. There are two 

complex roots and two real roots. For the distribution of 

the refractive index,   should take only real-number 

values, so the two complex roots should be dropped first. 

One of the real roots varies from small to large when  

varies from 0 to 1. This is not in accord with the 

properties of the Eaton lens, so that real root should be 

dropped. Now only one real root remains, as follows:

′  ,    ,    , (5)

 ′∙′′ , (6)
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FIG. 1. Rotation angle  , the angle between the exit ray and 

the incident ray. The ray will bend rightward toward the 

center of the Eaton lens, because the center possesses higher 

refractive index.

FIG. 2. The curve of the calculated distribution. The refractive- 

index curve   versus  is plotted from Eq. (8), which was 

solved using mathematical software.
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where  is the radius of the Eaton lens for rotating 90°, 

and the intermediate variables ′     are used to help 

in abbreviating the refractive-index expression  . The 

curve of   versus  was plotted, as shown in Fig. 2; 

we call this the calculated distribution. In Fig. 2 the x 

axis plots the normalized radial coordinate , ranging 

from 0 to 1, and the y axis plots the refractive index  , 

ranging from 1 to ∞. According to the properties of the 

Eaton lens,   goes to ∞ when  , and to 1 when 

. When light rays encounter the surface of the Eaton 

lens, they are not refracted.

III. SIMULATION USING FINITE-ELEMENT 

ANALYSIS (FEA)

There are many important, popular numerical methods 

in computational electromagnetics, for which exclusive 

computer programs have been designed. Among them, the 

finite-difference time-domain (FDTD) method and the 

finite-element analysis (FEA) method are two of the most 

famous methods. In this paper, we choose the FEA method. 

Representative FEA software packages are EM Solution, 

COMSOL Multiphysics, and HFSS.

The simulated Eaton lens is simply a sphere containing a 

graded-index medium satisfying the distribution of Eq. (8). 

In the FEA software, the geometric picture of an Eaton 

lens with spherical symmetry should be modeled, and its 

domain should be appointed to the refractive-index  , 

as shown in Fig. 3. After that, parallel light rays are 

released from the left at ∞, and then enter the Eaton lens 

with refractive index profile   (see Eq. (8)). Once the 

rays enter the Eaton lens with a gradient index, they bend 

toward the larger refractive index at the center. Therefore, 

all rays will bend 90° to the right and will exit from the 

bottom of the Eaton lens. The light trajectories of the 

simulation are identical to our expectations.

Eq. (8) should been appointed to the refractive index 

  of the Eaton lens. Is the refractive-index profile just 

the Eq. (8) for the perfect simulation? We can analyze the 

results obtained through FEA software. Figure 4 is the 

simulated distribution of the refractive-index profile. The left 

panel shows the pseudocolor distribution of the refractive- 

index profile with spherical symmetry. The colors from 

white to black represent refractive-index values from 1 to 

∞. The variations are smoother in the outer lane and 

sharper in the central zone. The right panel shows the 

simulated distribution curve of the refractive index taken 

along an arbitrary radius. The curve matches the calculated 

distribution curve in Fig. 2 very well.

One application of the Eaton lens with 90° rotation is 

image stabilization. The pentagonal prism has ever been 

used to maintain image stabilization in camera systems 

[10]. The antishake principle of the pentagonal prism relies 

on the action of a double-sided mirror. The incident ray 

will rotate 90° to the exit ray, which just equals double 

the included angle of the double-sided mirror. No matter 

the direction in which the incident ray enters the pentagonal 

prism, the exit ray will always rotate 90° as shown in 

FIG. 4. The simulated distribution of the refractive-index profile. The left panel shows a pseudocolor graph of the refractive-index 

profile. The colors from white to black represent refractive-index values from 1 to ∞. The right panel shows the simulated distribution 

curve of the refractive index, which matches very well the calculated distribution curve in Fig. 2.

FIG. 3. The simulation of the Eaton lens with rotation angle of 

90°. Parallel light rays are released from the left at ∞, enter 

the Eaton lens, bend 90° to the right, and exit from the bottom 

of the lens.
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Fig. 5. The Eaton lens with 90° rotation can accomplish 

the same thing, so it can be used to stabilize an image. 

Therefore, a device including an Eaton lens with 90° 

rotation is potently applied in an image-stabilization system.

IV. CONCLUSION

The Eaton lens for rotating 90° was designed using 

Luneburg theory. A fourth-order equation in  was 

deduced. The equation was solved and studied by means 

of mathematical software. Only one of the four roots of 

the equation was kept. To verify the refractive-index 

profile, simulation using FEA software was performed. 

The results of the simulation proved to be identical to our 

expectations. The treatment provides a possible method for 

rotation by many other angles.
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FIG. 5. A pentagonal prism can also rotate ray 90°.


