DOI QR코드

DOI QR Code

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee (Department of Physics, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Seong Cheol (Department of Physics, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Won Tae (Department of Physics, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Jagang (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Min, Bumki (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Rotermund, Fabian (Department of Physics, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.04.14
  • Accepted : 2020.05.26
  • Published : 2020.08.25

Abstract

In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.

Keywords

References

  1. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, "Wireless sub-THz communication system with high data rate," Nat. Photon. 7, 977-981 (2013). https://doi.org/10.1038/nphoton.2013.275
  2. I. F. Akyildiz, J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Phys. Commun. 12, 16-32 (2014). https://doi.org/10.1016/j.phycom.2014.01.006
  3. T. L. Cocker, D. Peller, P. Yu, J. Repp, and R. Huber, "Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging," Nature 539, 263-267 (2016). https://doi.org/10.1038/nature19816
  4. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, NY, 2009).
  5. M. Tani, S. Matsuura, K. Sakai, and S.-I. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt. 36, 7853-7859 (1997). https://doi.org/10.1364/AO.36.007853
  6. A. Schwagmann, Z. Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, "Terahertz emission characteristics of ErAs: InGaAs-based photoconductive antennas excited at 1.55 ${\mu}$m," Appl. Phys. Lett. 96, 141108 (2010). https://doi.org/10.1063/1.3374401
  7. B. Globisch, R. J. B. Dietz, R. B. Kohlhaas, T. Gobel, M. Schell, D. Alcer, M. Semtsiv, and W. T. Masselink, "Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor," J. Appl. Phys. 121, 053102 (2017). https://doi.org/10.1063/1.4975039
  8. S.-G. Park, K.-H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, "Enhancement of terahertz pulse emission by optical nanoantenna," ACS Nano 6, 2026-2031 (2012). https://doi.org/10.1021/nn204542x
  9. C. W. Berry, N. Wang, M. R. Hashem i, M. U nlu, a nd M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun. 4, 1622 (2013). https://doi.org/10.1038/ncomms2638
  10. F. Miyamaru, Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, "Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas," Appl. Phys. Lett. 96, 211104 (2010). https://doi.org/10.1063/1.3436724
  11. P. Maraghechi and A. Y. Elezzabi, "Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters," Opt. Express 18, 27336-27345 (2010). https://doi.org/10.1364/OE.18.027336
  12. P. Maraghechi and A. Y. Elezzabi, "Experimental confirmation of design techniques for effective bow-tie antenna lengths at THz frequencies," J. Infrared, Millimeter, Terahertz Waves 32, 897 (2011). https://doi.org/10.1007/s10762-011-9805-6
  13. K. Takano, Y. Chiyoda, T. Nishida, F. Miyamaru, T. Kawabata, H. Sasaki, M. W. Takeda, and M. Hangyo, "Optical switching of terahertz radiation from meta-atomloaded photoconductive antennas," Appl. Phys. Lett. 99, 161114 (2011). https://doi.org/10.1063/1.3654156
  14. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114 (2005). https://doi.org/10.1063/1.1891304
  15. P. J. Hale, J. Madeo, C. Chin, S. S. Dhillon, J. Mangeney, J. Tignon, and K. M. Dani, "20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas," Opt. Express 22, 26358-26364 (2014). https://doi.org/10.1364/OE.22.026358
  16. D. Auston, "Impulse response of photoconductors in transmission lines," IEEE J. Quantum Electron. 19, 639-648 (1983). https://doi.org/10.1109/JQE.1983.1071904
  17. O. A. Castaneda-Uribe, C. A. Criollo, S. Winnerl, M. Helm, and A. Avila, "Comparative study of equivalent circuit models for photoconductive antennas," Opt. Express 26, 29017-29031 (2018). https://doi.org/10.1364/OE.26.029017
  18. Y. Shi, Q.-L. Zhou, C. Zhang, and B. Jin, "Ultrafast highfield carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy," Appl. Phys. Lett. 93, 121115 (2008). https://doi.org/10.1063/1.2992067
  19. J. E. Pedersen, V. G. Lyssenko, J. M. Hvam, P. U. Jepsen, and S. R. Keiding "Ultrafast local field dynamics in photoconductive THz antennas," Appl. Phys. Lett. 62, 1265-1267 (1993). https://doi.org/10.1063/1.108702
  20. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B 13, 2424-2436 (1996). https://doi.org/10.1364/JOSAB.13.002424
  21. H. Murakami, S. Fujiwara, I. Kawayama, and M. Tonouchi, "Study of photoexcited-carrier dynamics in GaAs photoconductive switches using dynamic terahertz emission microscopy," Photon. Res. 4, A9-A15 (2016). https://doi.org/10.1364/PRJ.4.0000A9
  22. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, "Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits," Opt. Lett. 28, 2058-2060 (2003). https://doi.org/10.1364/OL.28.002058
  23. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, and M. Tonouchi, "Imaging of large-scale integrated circuits using laser terahertz emission microscopy," Opt. Express 13, 115-120 (2005). https://doi.org/10.1364/OPEX.13.000115
  24. G. Matthaus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tunnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008). https://doi.org/10.1063/1.2976162
  25. D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, "Applications of terahertz spectroscopy in biosystems," Chem. Phys. Chem. 8, 2412-2431 (2007). https://doi.org/10.1002/cphc.200700332
  26. L. Xie, Y. Yao, and Y. Ying, "The application of terahertz spectroscopy to protein detection: A review," Appl. Spectrosc. Rev. 49, 448-461 (2014). https://doi.org/10.1080/05704928.2013.847845
  27. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Nondestructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003). https://doi.org/10.1364/OE.11.002549
  28. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications-explosives, weapons and drugs," Semicond. Sci. Technol. 20, S266 (2005). https://doi.org/10.1088/0268-1242/20/7/018