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FAT GRAFTS
Adipose tissue
Autologous fat grafts have been widely used in soft-tissue aug-
mentation and reconstruction surgery. Despite their numerous 
advantages, including a simple harvest technique, low cost, and 
easy accessibility, the applicability of autologous fat grafts is lim-
ited by their unpredictable long-term outcomes associated with 
poor graft retention [1,2]. In recent decades, several advances 
have been made to overcome the low rate of graft survival, in-
cluding various refinements of existing techniques, the develop-
ment of nanofat to reduce the size of fat particles used for injec-
tion, and the standardization of protocols for fat harvesting and 
processing [3-5]. 

Adipose tissue is composed of at least two functionally dis-

tinct types of fat: white and brown [6]. The primary roles of 
white adipose tissue are energy storage and the release of hor-
mones and adipokines that modulate whole-body metabolism 
[7]. Consequently, the majority of studies related to adipose tis-
sue have focused on the treatment of obesity, which contributes 
to an increased risk of developing type 2 diabetes, cardiovascu-
lar disorders, and cancer [8]. Additionally, white tissue can act 
as a thermal insulator and protect other organs from mechani-
cal damage [9]. However, for plastic surgeons, the physical 
properties of white adipose tissue, not its function, make autol-
ogous fat grafts a useful component of their surgical strategies.

Fate of fat grafts
Adipose tissue is composed of adipocytes, adipose-derived 
stem/stromal cells (ASCs) and various other cells, including en-
dothelial, mural, immune, and neuronal cells [10]. In addition, 
adipose tissue is highly vascularized, as each adipocyte is sur-
rounded by an extensive capillary network [11]. Thus, angio-
genesis is closely related to the maintenance and remodeling of 
adipose tissue. A recent study investigating the fate of adipo-
cytes and ASCs after non-vascularized fat grafts identified three 
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zones (survival, regenerating, and necrotic) in grafts [12]. In the 
survival zone, which is less than 300 μm thick, both adipocytes 
and ASCs can survive. In the regenerating zone, which varies in 
thickness depending on aspects of the microenvironment such 
as vascularity, adipocytes die and only ASCs survive. Grafted 
adipose tissue in this zone degenerates within the first week, 
and regenerates into mature adipocytes after 3 months [13]. 
However, in the necrotic zone, which is at the center of the 
graft, both adipocytes and ASCs eventually die and are ab-
sorbed, after which the zone is filled with fibrous tissue. Ac-
cording to this theory, rapid revascularization of the surround-
ing recipient tissue and expansion of the regenerating zone re-
sulting from increased vascularity are crucial for ensuring the 
survival of non-vascularized fat grafts.

ADIPOSE-DERIVED STEM CELLS
ASCs are multipotent mesenchymal stem/stromal cells (MSCs) 
with potential to differentiate not only into mesodermal lineag-
es [14], such as adipocytes, osteoblasts, chondrocytes, fibro-
blasts, and myocytes, but also into non-mesodermal cell types, 
such as neuronal cells [15], hepatocytes [16], endothelial cells 
[17,18], and cardiomyocytes [19]. In addition to their extensive 
differentiation potential, ASCs secrete high levels of growth fac-
tors, including epidermal growth factor (EGF), vascular endo-
thelial growth factor (VEGF), basic fibroblast growth factor 
(bFGF), keratinocyte growth factor (KGF), platelet-derived 
growth factor (PDGF), hepatocyte growth factor (HGF), and 
transforming growth factor-beta (TGF-β) [20]. In addition to 
growth factors, ASCs release cytokines, including fms-related 
tyrosine kinase 3 (Flt-3) ligand, granulocyte-colony stimulating 
factor (G-CSF), granulocyte macrophage-colony stimulating 
factor (GM-CSF), macrophage-colony stimulating factor (M-
CSF), and various interleukins [21]. 

Stromal-vascular fraction 
Manual isolation of ASCs typically involves enzymatic diges-
tion of adipose tissue using collagenase, followed by centrifuga-
tion to separate floating mature adipocytes from other cells in 
the pellet [3,22]. The isolated cells in the pellet, known as stro-
mal vascular fraction (SVF) cells, are a heterogenous mixture of 
cells including ASCs, endothelial cells, pericytes, immune cells, 
and fibroblasts [23]. SVF cells are a primary culture from adi-
pose tissue, and are designated as passage 0 ASCs. While bone 
marrow stem cells constitute less than 0.002% of stromal cells, it 
has been estimated that ASCs constitute up to 2% of SVF cells. 
This underscores the clinical value of adipose tissue as a valu-
able source of competent adult stem cells [24]. However, the 

composition ratio of ASCs within SVF cells could vary widely 
depending on factors including age, sex, clinical history, and the 
harvest site. 

Definition of ASCs
ASCs were first reported by Zuk et al. in 2001 [25]. These cells 
have been described using a variety of terms, and were finally 
named as ASCs by the International Federation for Adipose 
Therapeutics and Science (IFATS) [26]. The IFATS and the In-
ternational Society for Cellular Therapy published a joint state-
ment to establish minimal definitions of SVF cells and ASCs 
(Table 1) [27]. According to this declaration, SVF cells and ASCs 
should have a viability of > 70% and > 90%, respectively. SVF 
cells express the following marker profile: CD13, CD29, CD44, 
CD73, and CD90 positive (> 40%), and CD34 positive (> 20%), 
but CD31 (< 20%) and CD45 negative (< 50%). ASCs should 
be positive for CD13, CD29, CD44, CD73, CD90, and CD105 
(> 80%), but negative for CD31, CD45, and CD235a (< 2%). 
ASCs can be distinguished from bone-marrow-derived MSCs 
as they are CD36-positive and CD106-negative. Moreover, they 
are expected to be able to differentiate into adipogenic, osteo-
genic, and chondrogenic lineages (Fig. 1).

Isolation of ASCs
Although it is possible to sort ASCs by flow cytometry using 
immunophenotypic surface markers, the necessary antibodies 
and reagents are mostly approved for research use only. Thus, 
for clinical purposes, ASCs can be obtained from SVF cells by 
in vitro cultivation on cell culture plates. They accumulate as 
spindle-shaped cells that are grossly indistinguishable from fi-
broblasts. ASCs from passage 3–7 are usually used for clinical 
and experimental purposes. 

SVF cells can be isolated from adipose tissue by enzymatic di-
gestion or non-enzymatic (mechanical) disruption techniques. 

Table 1. Immunophenotypic surface markers of SVF cells and ASCs
SVF cells ASCs MSCs

CD34 + ± –

CD45 + – –

CD13 ± ++ ++

CD73 ± ++ ++

CD90 ± ++ ++

CD105 ± ++ ++

CD10 ++ ±

CD36 + –

CD106 ± +

++, ≥70%; +, ≥30%–70%; ±, ≥2%–30%; –, ≤2%.
SVF, stromal vascular fraction; ASCs, adipose-derived stem/stromal cells; MSCs, 
mesenchymal stem/stromal cells.
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The most common isolation protocol consists of enzymatic di-
gestion with collagenase, centrifugation, and red blood cell ly-
sis. In addition to collagenase, trypsin or dispase can be used to 
digest adipose tissue [27]. The enzymatic method currently 
yields more nucleated cells than the non-enzymatic method, 
indicating better efficiency in terms of isolation of ASCs. How-
ever, this protocol involves the use of xenogeneic components, 
especially collagenase, and these substances may pose potential 
risks and safety issues, such as exposure to infectious agents and 
immune reactions, although residual collagenase itself does not 
exhibit toxicity [28,29]. 

As an alternative approach, non-enzymatic methods that use 
physical force to separate ASCs within the adipose tissue have 
received increasing attention because they are simple, rapid, 
and inexpensive. Non-enzymatic disruption involves a combi-
nation of the following methods: filtration, centrifugation, red 
blood cell lysis, mechanical agitation, vortexing, vibration, and 
ultrasonic cavitation [20]. However, in comparison with enzy-
matic digestion, the disruptive physical forces employed in the 
non-enzymatic method are not sufficient to ensure that ASCs 
are released from the perivascular space, which is assumed to 

be a niche of ASCs, leading to a low yield of SVF cells. This is a 
critical disadvantage of this method [30].

CELL-ASSISTED LIPOTRANSFER
Clinical efficacy
Cell-assisted lipotransfer (CAL) has been reported to improve 
the clinical outcomes of fat grafts [31-33]. In this novel concept, 
a fat graft is enriched through the intermixture of autologous 
SVF cells. CAL involves increasing the density of ASCs in the 
adipose tissue by supplementing the tissue with SVF cells or 
ASCs (Fig. 2). As a result, ASC-poor aspirated fat can be con-
verted into ASC-rich fat for grafting. The clinical efficiency of 
CAL was first demonstrated in a randomized controlled study 
in 2013 [34]. In the study, two fat types (30 mL each), enriched 
with ASCs (2.0× 107 cells per mL of fat) or without ASCs, were 
injected into the subcutaneous plane as a bolus in the posterior 
part of the right and left upper arm. Magnetic resonance imag-
ing measurements of the volume of the fat grafts at 4 months 
postoperatively revealed that the ASC-enriched fat grafts had 
significantly higher residual volumes than the control fat grafts 

Fig. 1. The isolation procedure, morphology, and differentiation potential of adipose-derived stem/stromal cells (ASCs). Stromal vascular frac-
tion (SVF) cells can be isolated by enzymatic digestion of adipose tissue using collagenase, followed by centrifugation to separate floating ma-
ture adipocytes from other cells. The isolated cells in the pellet, known as SVF cells, consist of a mixture of heterogeneous cell types including 
ASCs. ASCs can be obtained from the SVF cells by in vitro cultivation on cell culture plates. They accumulate as cells with a spindle-shaped 
morphology and the capacity to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Their differentiation potential can be an-
alyzed by histologic staining using Oil Red O for adipogenic differentiation, Alizarin Red for osteogenic differentiation, and Alcian Blue for 
chondrogenic differentiation.
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(23.0 cm3 vs. 4.7 cm3). Despite several criticisms concerning the 
exceedingly high cell numbers, bolus injection, and the use of 
cultured ASCs, CAL has been accepted and studied as a cellular 
therapy for aesthetic and reconstructive applications. In another 
study, superior fat graft retention was observed when cultured 
ASCs were used as a source of cellular enrichment in CAL, in-
stead of SVF cells [35].

Since the introduction of CAL, clinical trials targeting various 
sites in the body have been reported. The clinical trials of facial 
fat grafts enriched with SVF cells or ASCs are summarized in 
Table 2 [33,36-44]. CAL has been applied not only to treat lipo-
dystrophic diseases, such as hemifacial atrophy (Parry-Rom-
berg syndrome) and craniofacial microsomia, but also to per-
form cosmetic procedures, such as facial contouring and scar 
revision, and as an adjunct in face lift procedures. A recent me-
ta-analysis suggested that CAL may be more applicable on the 
face than on the breast [45]. To verify this result, a prospective 
randomized controlled study investigating the efficacy of CAL 
in the craniofacial region is required. 

Mechanism
Several mechanisms have been proposed to explain the en-
hancement of fat graft survival mediated by SVF cells or ASCs. 
According to one hypothesis, ASCs promote angiogenesis and 
subsequent revascularization by secreting various growth fac-
tors [46,47]. The second hypothesis states that ASCs can induce 
angiogenesis and adipogenesis by differentiating into endothe-
lial cells and adipocytes [48]. To elucidate the fate and microen-
vironmental changes of fat, ASCs, and recipient tissue associat-
ed with CAL, the author generated an experimental animal 

model using two different transgenic reporter mice, and grafted 
both fat and ASCs expressing different fluorescent signals into 
wild-type mice [1]. Tracing analyses revealed that the donor 
ASCs participated in angiogenesis by differentiating into endo-
thelial cells. Further, newly differentiated fat from donor ASCs 
and recipient tissue was found to be integrated with the donor 
fat, leading to improved graft retention. Moreover, ASC supple-
mentation promoted angiogenesis and adipogenesis in a dose-
dependent manner. However, in a subsequent experimental 
study, intravenously injected ASCs concurrent with fat grafts 
were found to induce angiogenesis and adipogenesis by para-
crine action, rather than by direct differentiation, although con-
sistent results were found in terms of enhancing the survival of 
grafted fat [49]. 

Safety
The potential of ASCs to create a favorable microenvironment 
for improved graft retention and regeneration could also induce 
favorable conditions for tumor cell growth. In particular, the 
possibility cannot be ruled out that ASCs may stimulate dor-
mant breast cancer cells after CAL in patients with a mild de-
formity after mastectomy for breast malignancy. To date, sever-
al studies, including in vitro and in vivo experiments, have in-
vestigated this issue and reported markedly controversial find-
ings [50-53]. A clinical analysis of a large series of autologous 
fat grafts without supplementation with ASCs for breast recon-
struction demonstrated a low complication rate and no evi-
dence of increased oncologic risk [54-57]. The RESTORE-2 tri-
al, which was the first prospective clinical trial of CAL for re-
construction after breast conservation therapy showed no in-

Fig. 2. Schematic illustration of cell-assisted lipotransfer (CAL). Stromal vascular fraction (SVF) cells are isolated using remnant fat other than 
the amount of fat planned for grafting. In CAL using adipose-derived stem/stromal cells (ASCs), two liposuction procedures are usually re-
quired, for ASC culture and fat grafting, respectively. Prior to grafting, the fat is enriched by mixing it with SVF cells or ASCs. 
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crease in the local recurrence rate in 67 patients [58]. However, 
the findings of 12-month follow-up after post-lumpectomy re-
construction remain inconclusive with regard to the oncologic 
safety of CAL in breast reconstruction. Thus, a prospective 
study with a longer follow-up period is needed to prove the on-
cologic safety of CAL for reconstruction after cancer treatment. 

PERSPECTIVE
Autologous fat grafts are a primary choice of treatment for the 
reconstruction of mild to moderate contour deformities. ASCs 
have been noted for their simple harvesting procedure and ex-
cellent therapeutic potential in regenerative medicine. None-
theless, several issues need to be elucidated regarding the use of 
fat grafts and CAL [59]. 

Clinicians need to know the optimal ratio of adipose tissue to 
SVF cells or ASCs for CAL. Moreover, it would be invaluable to 
develop precise surgical plans based on the predicted survival 
of fat grafts. Prior to answering practical questions, comparative 
analyses and standardization of fat harvest sites, techniques, 
and SVF isolation protocols with uniform parameters are nec-
essary [2]. 

Demonstrating the oncologic safety of stem cell use with CAL 
is a prerequisite for harnessing its clinical potential. The safety 
of CAL is controversial due to the lack of experimental models 
capable of reproducing the complexity of the tumor microenvi-
ronment [60]. Therefore, suitable experimental models must be 
developed to identify potential mechanisms of oncologic risk. 
Ultimately, a prospective, multi-center case-cohort study based 
on a registry system will be crucial for providing convincing ev-
idence. 

Compared to SVF cells, the use of ASCs in Korea is limited 

due to legal and regulatory issues. The indications of cell thera-
py with ASCs are restricted to several diseases. Thus, clinical 
trials that provide convincing evidence regarding the efficacy 
and safety of ASCs are needed to obtain scientific, clinical, and 
legal authorization for their use.

A large number of ongoing studies and clinical trials will 
broaden the indications of ASC use and highlight the clinical 
value of ASCs beyond the field of plastic and reconstructive 
surgery. In the context of advances in fat grafts and CAL, ongo-
ing research should expand to consider both the physical and 
functional properties of white adipose tissue.

CONCLUSION
Autologous fat grafts have emerged as a primary surgical option 
for soft-tissue augmentation and reconstruction. The use of fat 
grafts enriched with SVF cells or ASCs improves the long-term 
survival of grafts and shows promising results. If oncologic 
safety is demonstrated by scientific and clinical evidence, stem 
cell therapeutics such as CAL may shift the paradigm of clinical 
strategy and practice, with potential to be applied for various 
diseases. 
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Table 2. Characteristics of clinical trials of facial fat grafts enriched with SVF cells and ASCs 

Study (year) Enriched 
cells

No. of 
patients Age (yr) No. of operations Injected volume 

(mL)
Volumetric 

measurement method
Volume gain 

(mL)
Fat survival 

rate (%)
Follow-up 

period (mo)

Sasaki (2015) [44] SVF  9 65.5 (52–77) 1 9.0±2.0 3D scan NA 72.9±50.0 12

Gentile et al. (2014) [43] SVF 10 23–67 2 in 40% NA MRI, US NA 63a) 12

Chang et al. (2013) [42] SVF 10 27.5 (19–35) 2 in 30%, 3 in 20% 34.4±13.7 CT NA 68.3±1.7  6

Li et al. (2013) [41] SVF 26 29.5±6.8 1 17.5±7.3 CT 11.5±5.3 64.8±10.2  6

Tanikawa et al. (2013) [40] SVF  7 12.1±2.2 1 27±7 3D CT NA 88.0±13.0  6

Lee et al. (2012) [39] SVF  9 43.3±14.7 1 NA Photography NA NA  3

Koh et al. (2012) [38] ASC  5 28a) 1 29.9±6.7 3D CT, 3D scan 18.1±5.2 61.1±13.7 15

Sterodimas et al. (2011) [37] SVF 10 43.9±17.0 1 74.3±47.0 Subjective satisfaction NA NA 18

Tiryaki et al. (2011) [36] SVF  5 NA 1 29.2±16.2 Photography NA NA 10

Yoshimura et al. (2008) [33] SVF  3 38.7±8.1 1 100±10 Photography NA NA 10.3

Values are presented as mean (range) or mean±SD.
SVF, stromal vascular fraction; ASCs, adipose-derived stem/stromal cells; NA, not available; 3D, three-dimensional; MRI, magnetic resonance imaging; US, ultrasound; CT, com-
puted tomography. 
a)Mean. 
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