
1. Introduction

Underwater acoustics is the study of the phenomena related to the 

generation, propagation, transmission and reception of sound waves in 

water. It is applied in a variety of underwater activities such as 

underwater communication, target detection, and investigation of 

marine resources and environments, mainly using sound navigation 

and ranging (SONAR) systems. The main objective of underwater 

acoustic remote sensing is to indirectly acquire information on a target 

of interest using acoustic data. To extract information from acoustic 

data, machine learning, which has been recently attracting significant 

attention, has been employed in a variety of ways. The machine 

learning techniques mainly used in underwater acoustics and their 

applications in passive SONAR systems are introduced in the first two 

parts of this work, respectively (Yang et al., 2020a; Yang et al., 

2020b). In the review article, we review the research on the application 

of machine learning in active SONAR systems for target detection and 

classification.

2. Active SONAR Signal Processing

The passive SONAR-based target localization technique discussed 

in the previous part (Yang et al., 2020b) can be applied to active 

SONAR systems without significant modification. However, a key 

difference between passive and active SONAR target detection is that, 

in passive SONAR systems, sounds generated by targets of interest 

such as ships and fish are received, whereas in active SONAR systems, 

the observer directly transmits a signal and receives a scattered signal 

from the target. Consequently, for active SONAR detection, various 

techniques have been developed to utilize the characteristics of the 

sound source or those of a scattered signal depending on the properties 

of the target, unlike in the case of passive SONAR detection. This 

review article is aimed primarily at discussing active target detection 

and classification.

2.1 Active Target Detection and Classification

Traditional active SONAR signal processing can be largely 

classified into the processes of (1) detecting the signal of interest, (2) 
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Fig. 1 Flow diagram of the normalization scheme depicting how 

the reverberation and background noise power is estimated 

from leading and lagging windows of auxiliary data. A 

conventional matched filter detector would compare the 

normalized data to a threshold to declare detection 

(Abraham and Willett, 2002).

identifying (or classifying) the signal of interest, and (3) tracking the 

signal of interest (Abraham, 2019). In particular, because active 

SONAR transmits a signal and detects a scattered signal from the 

target, noise that differs from the transmitted signal is removed before 

signal detection is performed, by using a matched filter after 

beamforming. However, because the signal scattered by the rough 

interface or underwater scatterer is also similar to the sound source 

signal, it cannot be conveniently removed even using a matched filter. 

In addition, the clutter signal scattered by the local domain, such as a 

sea floor outcrop, exhibits a behavior similar to that of the target 

signal. In this manner, when an active SONAR is in operation, a false 

alarm can be triggered by a scattered/clutter signal other than the target 

signal. Consequently, the target detection performance deteriorates.

In the typical target detection process, the target is identified based 

on a threshold. In particular, the cell-averaging constant false alarm 

rate (CFAR) is a tool for normalizing the signal considering the noise 

effect around the target signal of interest and for applying a threshold 

to increase the target detection performance (Fig. 1) (Abraham, 2019; 

Abraham and Willett, 2002). In addition, in another technique for 

improving the performance, a variable that incorporates the variation 

of the signal-to-noise ratio over time is designed to explore a section in 

which a scattered signal by the target exists (Abraham and Willett, 

2002).

In the aforementioned active SONAR signal processing, after the 

detection of the signal of interest, a post-processing technique such as 

clustering is applied to remove the clutter signals that exhibit a 

behavior similar to that of the target signal as much as possible. 

Finally, a SONAR operator manually determines whether the signal is 

the target or clutter by using the visual (e.g., spectrogram) or auditory 

(e.g., timbre) information of the signal. In an environment where 

clutter signals are likely to occur, such as shallow waters, the number 

of tasks for the SONAR operator increases. To reduce this workload, 

studies on the application of machine learning to active target signal 

detection have begun. In particular, the following techniques have 

been proposed to reduce the amount of computation. First, a target 

signal candidate group is searched by a conventional target detection 

method. In addition, a detector that has been trained with the target 

signal characteristics of active SONAR data is applied to determine 

whether the detected signal is the target signal (Young and Hines, 

2007). However, if the machine learning-based target signal classifier 

is applied directly to the entire acquired signal rather than being 

limited to the first detected target signal, the detection and 

classification steps of the conventional active SONAR signal 

processing can be integrated into one process (Shin et al., 1997). In this 

regard, machine learning-based target detection and machine 

learning-based target classification are used without distinction in this 

review article.

Gorman and Sejnowski (1988b) conducted the first classification of 

target signals by applying machine learning in underwater acoustics. 

In their studies, a metal cylinder and a cylindrical rock were selected as 

the target and the clutter, respectively. The target signals and 

clutter-scattered signals were measured according to the aspect angles. 

In particular, the linear frequency modulation signal was used as the 

sound source signal in their study. Based on the concept that the 

frequency variation of a scattered signal over time can be observed 

with a short-time Fourier transform, a spectral envelop displaying the 

frequency energy according to the observation time was used as the 

input value of the neural network. In addition, they experimentally 

demonstrated that the targets can be detected with a high and stable 

classification performance (that is, the effect of the initial value of an 

irregularly generated neural network is marginal) if the scattered signal 

of various aspect angles is included in the training data and the training 

is performed using a hidden layer and a neural network with a 

sufficient number of neurons. Furthermore, Gorman and Sejnowski 

(1988a) attempted to describe the neural network's classification 

process for target signals (using weights of a hidden layer and neurons 

activated thereby) in association with the scattered signal’s 

characteristics (bandwidth and onset/decay characteristics).

As described above, the machine learning-based target detection 

technique that applies the classify-before-detect strategy must utilize 

comprehensive information of the observation signal similar to how a 

SONAR operator uses various information to determine the target. In 

particular, to reduce false alarms caused by clutter signals, raw data 

must be converted to a domain that makes it convenient to distinguish 

target signals from clutter signals (Fig. 2). In this regard, as a 

representative example, Shin et al. (1997) observed and analyzed 

different target signals with respect to the shape or internal structure of 

the target. Furthermore, features effective for target/clutter signal 

identification were extracted to improve the target detection 

performance. These included time variations, frequency spectra, 
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Fig. 2 Selection of appropriate projection spaces can improve 

clutter-reduction performance. Stochastic impulsive sources 

generally enlarge the target and clutter spaces spanned by 

raw time-domain data. The main goal of projection-space 

investigation is to represent both classes (i.e., target and 

clutter) compactly in the transformation space for improved 

class separation and lower false alarm rate (Shin et al., 1997).

frequency variation over time, and auditory characteristics of the 

observed signals. Then, features optimized for target signal 

classification were selected and combined with several machine 

learning algorithms, including neural networks, to detect the target 

signals. This method displayed performance superior to that of the 

conventional method by producing fewer false alarms and higher 

target signal classification accuracy.

It was mentioned earlier that target detection becomes challenging 

owing to signals scattered by various underwater clutter. Nevertheless, 

the SONAR operator is trained to recognize the differences between 

the scattered target signal and the scattered clutter signal. Based on 

this, Young and Hines (2007) proposed a target signal detector 

reflecting the SONAR operator's auditory perception. In particular, 

acoustic cognitive features (timbre characteristics), which are the main 

aspects of interest in musical acoustics, were extracted from the signal 

duration containing the target or clutter signal. That is, the equivalent 

rectangular bandwidth (ERB) scale is defined based on the human 

tendency of analyzing the low frequency band in more detail while 

detecting a sound. In this nonlinear frequency scale, when a 

gammatone filter is applied to the original signal, the filtered time 

series signal can be obtained in each frequency band. The time delay 

between the start (or end) of the echo and the peak of the temporal 

envelop and the slope of the line joining the start (or end) of the echo 

and the peak of the temporal envelop obtained through the above 

process were used as features (Fig. 3(a)). In addition, the energy in 

each frequency band of the signal can be calculated through the above 

process, and a perceptual loudness function can be derived through the 

Fig. 3 (a) Extraction of sub-band attack time feature values from 

several channels of the auditory filter bank; the lowest trace 

exhibits the maximum sub-band attack time (maxSBAT) 

and the frequency of this filter bank channel corresponds to 

maxSBAT-F. (b) Extraction of peak loudness frequency 

(PLF), peak loudness value (PLV), and loudness centroid 

(LC) feature values from a perceptual loudness function 

(Young and Hines, 2007).

calculation (Fig. 3(b)). The feature vectors reflecting the auditory 

perception characteristics of humans were defined by combining the 

peak value of this function and the corresponding frequency with the 

previously designed features. Then, to avoid having an excessive 

number of dimensions, elements effective for target/clutter 

classification were selected from among the feature vector elements. 

Furthermore, the feature vector dimension was reduced through 

principal component analysis, and the resulting vectors were used as 

final input values. In this manner, the characteristics reflecting human 

auditory perception characteristics were combined with a simple 

machine learning algorithm such as a Gaussian classifier to classify 

target signals such as marine structures. Thereby, the target signals 

differing from clutter signals were classified with high accuracy.
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The performance of the target signal classifier reflecting the timbre 

characteristics is affected by the wave propagation phenomenon 

depending on the ocean environment, noise, and time-varying ocean 

environment. In this regard, Murphy and Hines (2014) tested the 

proposed target signal classifier for robustness against variations in the 

ocean environment, using target/clutter signals (Clutter07/Clutter09) 

measured in different environments. In this case, apart from 

characteristics of the ocean environment (such as underwater sound 

speed or noise), the experimental design factors including the transmitted 

signal for measuring the target/cutter signal, ship route, and object used 

Fig. 4 (a) Scatter plot of testing echoes in the reduced (two-dimensional) 

feature space. The circular gray target region contains 90% 

of the target echoes (black dots) and the surrounding white 

clutter region contains 64% of the clutter echoes (outlined white 

squares). (b) ROC curves corresponding to the training dataset 

(solid line) and testing dataset (dashed line). The training AUC 

value is 0.91 (outstanding discrimination), and the testing AUC 

value is 0.86 (excellent discrimination). The Bayes-rate operating 

point (black circle) is shown at (0.23, 0.89) on the training 

curve and at (0.36, 0.90) on the testing curve (Murphy and 

Hines, 2014).

as the target/clutter were set identically in both of experiments. 

In their study, the Gaussian classifier was used as a classifier 

similarly as in the previous study (Young and Hines, 2007). 

Furthermore, the data obtained from Clutter07 were used for training. 

The performance of the classifier can be evaluated through a receiver- 

operating-characteristic (ROC) curve displaying the relationship 

between the probability of detection and the probability of false alarm. 

The target classifier performance is determined by calculating the area 

under the ROC curve (AUC). The AUC has a value between zero and 

one. The closer the value is to one, the higher is the target classification 

performance. A value of 0.91 was obtained when the AUC was 

calculated by applying the classifier trained with Clutter07 data to data 

from among Clutter07 not used for training. This demonstrates that the 

timbre-based target detector displays remarkable classification 

performance. Furthermore, a classifier trained with Clutter07 data was 

applied to Clutter09 data to obtain an AUC value of 0.86 (Fig. 4). 

Although this value is low compared to the result of using test data 

obtained in an environment identical to that of the training data, it 

evidently exhibits remarkable classification performance. 

Another related study tested the auditory perception capability of 

humans to classify target/clutter signals and compared this capability 

with the performance of a timbre-based target signal classifier (Allen 

et al., 2011). The subjects participating in the target/clutter signal 

classification experiment were able to distinguish the target signal 

from the clutter signal while using acoustic signals in all the frequency 

bands. However, when the experiment was performed with scattered 

signals that removed the signal component of the low frequency band, 

the target classification rate was substantially reduced. However, the 

timbre-based target signal classifier showed similar performance to 

those of most subjects. In particular, it was observed that unlike 

humans, the performance of the classifier slightly decreased when the 

signal bandwidth was limited.

A study that analyzed the probability distribution characteristics of 

clutter signals that limit the operation of active SONAR and applied 

them to classification is described as follows. Gelb et al. (2010) 

distinguished between target and clutter using the distribution 

characteristics of the matched clutter signal according to space–time. 

The clutter signals can be divided into bottom-like, compact 

stationary, and compact nonstationary classes. In this study, the 

probability distribution of the observed signal according to the above 

classes was derived by applying K-distribution and generalized Pareto 

distribution to unthresholded data and thresholded data, respectively. 

At this time, if the parameters of each distribution are adjusted and 

fitted to the observed signal, the distribution of parameters depends on 

the clutter class. Meanwhile, it is possible to directly calculate 

cumulants from the locally observed signal according to the class. 

These cumulants are also distributed differently according to the 

clutter signal class. By combining this with a classifier that estimates a 

class based on the probability distribution of input features, such as a 

Gaussian mixture model, it was demonstrated that the clutter signal 

could be classified according to its class.
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2.2 Seafloor Target Detection and Classification

Active SONAR can be used to detect targets on the seafloor or 

buried in sediment, as well as underwater targets. Early statistical 

studies on the classification of buried targets using the monostatic 

SONAR system were performed to develop a target classification 

technique using signals received from different aspect angles of the 

target by utilizing one sensor. Runkle et al. (1999a; 1999b) extracted 

features from the signals scattered from the target using a matching 

pursuit technique, one of the sparse representation algorithms, and 

classified five types of objects using a hidden Markov model. In 

addition, at approximately the same time, the results of applying 

pattern recognition techniques different from those used in the above 

study to detect buried targets were also published (Trucco and 

Pescetto, 2000; Trucco, 2001). They segmented the beamformed 

signals into partially overlapping frames, projected them into the 

time-frequency space, and classified the extracted features using a 

multivariate Gaussian classifier. In particular, they demonstrated that 

this method performed well even with the data obtained by an active 

SONAR system operating remotely with a low grazing angle.

Azimi-Sadjadi, et al. (2000) applied wavelet packet decomposition 

and linear predictive coding to backscattered target/clutter signals to 

extract features that can conveniently classify target/clutter, and they 

combined them with a neural network to obtain a classifier that can 

classify a target signal with high performance. At this time, the target 

signals comprised a signal scattered from a bullet-shaped metal object 

and one from a plastic material object with a truncated cone shape. The 

clutter signals were scattered from four types of clutters: a water-filled 

drum, an irregularly shaped limestone rock, soft granite, and water- 

logged logs. These targets and clutters were placed in a water tank 

environment with a limited size. The target/clutter backscattered 

signals were measured according to the aspect angle. Then, to generate 

a realistic target/clutter backscattered signal, preprocessing was 

applied to remove the interference of signals from multiple paths in a 

limited tank environment. Subsequently, a simulated reverberation 

signal was added. Furthermore, in their study, pre-processed 

observation signals and transmission signals were divided into 

multiple bands using wavelet packet decomposition. Moreover, 

cross-correlation of observation signals and transmission signals in 

each segmented band was performed, and the results were expressed 

using an autoregressive (AR) model. Here, when high-dimensional 

feature vectors are generated by combining AR coefficients derived 

according to each segmented band, features effective for convenient 

identification of target/clutter signals are extracted using the Fisher 

discriminant function. In addition, the dimension of the input feature 

vectors is reduced. Training and test data were sorted according to 

aspect angle, and performance was evaluated by training a two-layer 

neural network using the aforementioned feature vectors as inputs. The 

classifier proposed in their study exhibited performance superior to 

those of other existing classifiers. In particular, the results obtained by 

combining the results of backscattered signal classification at adjacent 

aspect angles showed higher performance improvements over those 

using the backscattered signals of a single aspect angle.

Azimi-Sadjadi et al. (2002) improved the previously developed 

target classifier further and proposed an adaptive target classifier that 

can achieve high performance even when using test data obtained in a 

different environment from the ocean environment of the training data. 

Here, the basic classifier used as a non-adaptive classifier is identical 

to the aforementioned two-layer neural network. The adaptive target 

classifier proposed in this study transforms the input vector into a 

vector insensitive to variations in the environment by adding a linear 

mapping between the input and the hidden layer of the non-adaptive 

classifier. In this process, the non-adaptive classifier is fixed, and the 

weight for linear mapping is learned. In particular, the difference 

between the output values of the adaptive and non-adaptive classifiers 

is increased using K-nearest neighbors (K-NN) and a 2-D sigmoid cost 

function. In their study, the effectiveness of the proposed method was 

verified by using test data having reverberation levels different from 

those of the training data. The proposed adaptive classifier exhibited 

higher performance in an environment with a reverberation level 

higher than that of the existing classifier.

Meanwhile, while developing a target signal classifier, even when 

the same input vector is used, classification performance may vary 

according to the machine learning algorithm used and according to the 

characteristic of the input data. Li et al. (2004) combined the input 

vectors defined by Azimi-Sadjadi et al. (2000) with multivariate 

Gaussian, K-NN, probabilistic neural networks, and support vector 

machines (SVMs) in addition to neural networks. They also compared 

and analyzed their performances. Among these, the SVM-based target 

signal classifier exhibited the most stable and remarkable 

performance. In addition, Yao et al. (2002) compared the results of 

classification by using the classifier developed by Azimi-Sadjadi et al. 

(2000) for different data having bandwidths of 40 kHz and 80 kHz. 

The result was presented in terms of ROC, error locations, and 

generalization and robustness for the noise. In their study, the result 

obtained using data with the 80 kHz bandwidth showed higher 

classification performance. Accordingly, a sub-band fusion technique 

based on the contribution of each band with subdivision of the 

broadband data was also proposed.

2.3 AUV and Automatic Target Recognition System

Underwater image information obtained via sensors such as side 

scan SONAR or synthetic aperture SONAR is generally used when 

classifying targets on the seafloor, such as mines, using an autonomous 

underwater vehicle (AUV). Recently, several studies have been 

presented that produced high-performance, high-resolution image 

processing and classification results through the application of 

machine learning for automatic target recognition (Isaacs, 2015; 

Kriminger et al., 2015; Myers and Fawcett, 2010). However, these 

methods have a limitation in that real-time processing is challenging. 

In particular, targets buried in the sediment cannot be classified 

following these approaches. In this regard, Fischell and Schmidt 

(2015) proposed a machine learning-based signal processing technique 
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Fig. 5 Simulated scattering amplitude dependence on angle for 

spherical and cylindrical targets. is calculated by setting the 

target at (0, 0) and the source at (-60, 0) such that the source 

is at 180°. Amplitudes shown here are for multiple receiver 

depths and ranges to the target. (a) Spherical target. (b) 

Cylindrical target (Fischell and Schmidt, 2015).

capable of real-time target classification in a system installed on an 

AUV. In general, when a signal emitted from a fixed sound source is 

scattered by a target, the scattering intensity depends on the angle 

between the line joining the sound source and target and that joining 

the target and receiver (azimuthal angle). Here, the intensity of 

scattered radiation for a specific target varies only marginally 

according to the distance between the sound source and receiver or the 

depth of the receiver. However, it varies substantially according to the 

azimuthal angle. In addition, the scattering radiation pattern displayed 

for all the azimuthal angles is highly dependent on the type of target 

(Fig. 5). Therefore, in their study, an input vector for machine learning 

was defined by using a bistatic scattering radiation pattern. 

Furthermore, it was combined with SVM to perform classification into 

spherical and cylindrical targets. The scattering radiation pattern used 

for training was normalized using the mean and standard deviation of 

the scattering intensity and discretized at regular azimuthal angle 

intervals. In this case, if multiple scattering intensities exist in the 

same discrete azimuthal angle, the feature value of the corresponding 

azimuthal angle is calculated as the median value. In this manner, 

scattering radiation patterns for all the azimuthal angles discretized at 

specific intervals can be represented using vectors, which can be used 

as inputs to the SVM. This target classifier was tested according to the 

discrete interval of the azimuthal angle and the number of data. It was 

verified that real-time target shape classification is possible using data 

(BayEx'14) obtained by an AUV in a real underwater environment.

Meanwhile, the target scattering amplitude according to the 

azimuthal angle depends on the properties of the seafloor, depth of the 

surface layer of the marine sediments, and depth of burial of the target. 

Therefore, the performance of the target classifier may deteriorate 

when the ocean environment and the experimental conditions for 

obtaining the training data differ from those of the test data. To address 

this problem, Fischell and Schmidt (2017a) analyzed the performance 

of the sphere/cylinder target classifier according to the inconsistencies 

between the ocean environment and the experimental conditions and 

proposed a method to reduce the performance degradation. In 

particular, their study reduced the dependence on similar 

environmental variations by adding a process whereby the mean and 

variance of the vectorized discrete scattering radiation pattern became 

zero and one, respectively. In addition, in this study, bistatic scattering 

tendency according to the seafloor properties, surface depth of marine 

sediments, and depth of buried targets were calculated using a 

simulator and utilized as training data for learning. The actual 

measurement data were used as test data. Then, it was verified that in 

the training environment with seafloor properties identical to those of 

the operating environment of the AUV, good classification 

performance was obtained even under conditions where the depth of 

the surficial sediment or the degree of buried targets were inconsistent. 

However, a rapid performance degradation of the classifier was 

observed when the seafloor properties differed from those in the 

environment for actual data acquisition. In this case, simulation was 

performed by varying the depth of the surface layer and that of the 

buried target, using these as training data to improve the classifier 

performance. It is considered that these improved results were 

achieved because various scattering tendencies and conditions were 

provided as observation information compared to the use of only 

specific conditions.

In the case of a cylindrical-shaped target, the scattering radiation 

pattern varies depending on the aspect angle between the axis of the 

target and the line joining the sound source and target. Fischell and 

Schmidt (2017b) proposed a method for estimating the aspect of a 

target from the scattered signal of the target measured using an AUV 

by utilizing a scattering radiation pattern that depends on the aspect 

angle. In this technique utilizing SVM regression, the simulator 

generated normalized scattering radiation pattern according to the 

target's aspect angle and trained it. Even for the cases when the ocean 

environment of the simulation did not match the environment of actual 

test data acquisition, it was verified that the target aspect classifier 

trained with simulation data derived a specific aspect angle with high 

accuracy when feature vectors were constructed using a sufficient 

number of measurement signals.

3. Conclusion

This review article summarizes the trend in the recent application of 

the highly advanced machine learning technology for target detection 

and classification using an active SONAR system. Depending on the 

characteristics of the active SONAR system that utilizes the signal 

transmitted from the sound source and scattered by the target, existing 

conventional signal processing techniques, acoustic modeling, and 

machine learning complement each other and produce improved 

results in terms of various aspects such as sound source characteristics, 

target properties, and target/clutter signal characteristics. The machine 

learning-based active target detection secured sufficient information 

on the target by utilizing the signals received from various aspect 

angles of the target and the feature factors extracted from the 

time-frequency space. Hence, it is possible to achieve significant 

reduction in the number of false alarm caused by clutter with signal 

characteristics similar to those of the target. In addition, it is likely that 
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human error from individual experience, level of proficiency, and skill 

differences would be significantly reduced using the automatic target 

detection technology, to be developed in the future, through the use of 

target detection techniques that reflect and incorporate human auditory 

perception capability.
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