DOI QR코드

DOI QR Code

Automatic Construction of SHACL Schemas for RDF Knowledge Graphs Generated by R2RML Mappings

  • Choi, Ji-Woong (School of Computer Science and Engineering, Soongsil University)
  • Received : 2020.06.08
  • Accepted : 2020.08.11
  • Published : 2020.08.31

Abstract

With the proliferation of RDF knowledge graphs(KGs), there arose a need of a standardized schema representation of the graph model for effective data interchangeability and interoperability. The need resulted in the development of SHACL specification to describe and validate RDF graph's structure by W3C. Relational databases(RDBs) are one of major sources for acquiring structured knowledge. The standard for automatic generation of RDF KGs from RDBs is R2RML, which is also developed by W3C. Since R2RML is designed to generate only RDF data graphs from RDBs, additional manual tasks are required to create the schemas for the graphs. In this paper we propose an approach to automatically generate SHACL schemas for RDF KGs populated by R2RML mappings. The key of our approach is that the SHACL shemas are built only from R2RML documents. We describe an implementation of our appraoch. Then, we show the validity of our approach with R2RML test cases designed by W3C.

RDF 지식 그래프의 사용이 늘어나면서 표준화된 RDF 스키마 표현 형식의 부재가 데이터 상호 교환·운용성을 저해한다는 문제가 제기되어 왔다. 이를 위해 W3C는 RDF 그래프에 대한 구조 묘사 및 검증을 지원하는 SHACL 명세를 개발하였다. 관계형 데이터베이스(RDB)는 구조화된 지식 그래프를 얻는 주요 원천 중 하나이다. RDB로부터 RDF 그래프를 생성하는 방법은 통상 W3C에 의해 표준화된 R2RML 명세를 따른다. 그러나 R2RML 방식으로 생성한 RDF 그래프에 대한 스키마를 생성하기 위해서는 전문가에 의한 별도의 수작업이 요구된다. 본 논문에서는 R2RML 매핑에 의해 구축된 RDF 그래프에 대한 SHACL 스키마를 자동 생성하는 방법을 제안한다. 제안하는 방법의 특징은 R2RML 매핑 문서만으로 SHACL 스키마를 생성할 수 있다는 것이다. 본 논문은 제안하는 방법의 구현 사항들을 상세히 기술하며 구현 결과물을 W3C의 R2RML 테스트 케이스에 적용한 결과를 제시한다.

Keywords

References

  1. H. Paulheim, "Knowledge graph refinement: A survey of approaches and evaluation methods," Semantic Web, Vol. 8, No. 3, pp. 489-508, December 2017. DOI: 10.3233/SW-160218
  2. Q. Xu, X. Wang, J. Li, Q. Zhang and L. Chai, "Distributed Subgraph Matching on Big Knowledge Graphs Using Pregel," IEEE Access, Vol. 7, pp. 116453-116464, August 2019. DOI:10.1109/ACCESS.2019.2936465
  3. D. Vrandecic and M. Krotzsch, "Wikidata: A free collaborative knowledgebase," Commun. ACM, Vol. 57, No. 10, pp. 78-85, September 2014. DOI: 10.1145/2629489
  4. M. Y. Jaradeh, A. Oelen, K. E. Farfar, M. Prinz, J. D'Souza, G. Kismihok, M. Stocker, and S. Auer, "Open Research Knowledge Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge," Proceedings of the 10th International Conference on Knowledge Capture, pp. 243-246, Marina Del Ray, USA, September 2019. DOI: 10.1145/3360901.3364435
  5. G. Webster, H. Nguyen, D. E. Beel, C. Mellish, C. D. Wallace, and J. Pan, "CURIOS: Connecting Community Heritage through Linked Data," Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 639-648, Vancouver, Canada, February 2015. DOI:10.1145/2675133.2675247
  6. F. Priyatna, R. Alonso-Calvo, S. Paraiso-Medina and O. Corcho, "Querying clinical data in HL7 RIM based relational model with morph-RDB," Journal of Biomedical Semantics, Vol. 8, No. 49, October 2017. DOI: 10.1186/s13326-017-0155-8
  7. T. Liebig, A. Maisenbacher, M. Opitz, J. R. Seyler, G. Sudra and J. Wissmann, "Building a Knowledge Graph for Products and Solutions in the Automation Industry," Knowledge Graph Building Workshop Co-located with the Extended Semantic Web Conference, Portoroz, Slovenia, June 2019.
  8. P. Ristoski and H. Paulheim, "RDF2Vec: RDF Graph Embeddings for Data Mining," Proceedings of The 15th International Semantic Web Conference, pp. 498-514, Kobe, Japan, September 2016. DOI:10.1007/978-3-319-46523-4_30
  9. M. Cochez, P. Ristoski, S. P. Ponzetto and H. Paulheim, "Global RDF vector space embeddings," Proceedings of The 16th International Semantic Web Conference, pp. 190-207, Vienna, Austria, October 2017. DOI: 10.1007/978-3-319-68288-4_12
  10. V. Bellini, A. Schiavone, T. D. Noia, A. Ragone, and E. D. Sciascio, "Knowledge-aware Autoencoders for Explainable Recommender Systems," Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, pp. 24-31, Vancouver, Canada, October 2018. DOI: 10.1145/3270323.3270327
  11. S. Vakulenko, J. D. F. Garcia, A. Polleres, M. d. Rijke, and M. Cochez, "Message Passing for Complex Question Answering over Knowledge Graphs," Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1431-1440, Beijing, China, November 2019. DOI: 10.1145/3357384.3358026
  12. N. Mihindukulasooriya, M. R. A. Rashid, G. Rizzo, R. Garcia-Castro, O. Corcho and M. Torchiano, "RDF shape induction using knowledge base profiling," Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp. 1952 -1959, Pau, France, April 2018. DOI: 10.1145/3167132.3167341
  13. L. Gonzalez and A. Hogan, "Modelling Dynamics in Semantic Web Knowledge Graphs with Formal Concept Analysis," Proceedings of the 2018 World Wide Web Conference, pp. 1175- 1184, Lyon, France, April 2018. DOI: 10.1145/3178876.3186016
  14. H. Knublauch and D. Kontokostas, "Shapes Constraint Language (SHACL)," https://www.w3.org/TR/shacl/
  15. B. Spahiu, A. Maurino and M. Palmonari, "Towards Improving the Quality of Knowledge Graphs with Data-driven Ontology Patterns and SHACL," Proceedings of the 9th Workshop on Ontology Design and Patterns co-located with 17th International Semantic Web Conference, pp. 52-66, Monterey USA, October 2018. DOI: 10.3233/978-1-61499-894-5-103
  16. O. Corcho, F. Priyatna and D. Chaves-Fraga, "Towards a New Generation of Ontology Based Data Access," Semantic Web, Vol. 11, No. 1, pp. 153-160, January 2020. DOI: 10.3233/SW-190384
  17. S. Das, S. Sundara and R. Cyganiak, "R2RML: RDB to RDF Mapping Language," https://www.w3.org/TR/r2rml/
  18. D. Tarasowa, C. Lange and S. Auer, "Measuring the Quality of Relational-to-RDF Mappings," Proceedings of the 6th International Conference on Knowledge Engineering and the Semantic Web, pp. 210-224, Moscow, Russia, October 2015. DOI: 10.1007/978-3-319-24543-0_16
  19. I. Boneva, J. Dusart, D. Fernandez-Alvarez and J. E. L. Gayo, "Shape Designer for ShEx and SHACL constraints," Proceedings of the 18th International Semantic Web Conference, pp. 269-272, Auckland, New Zealand, October 2019.
  20. F. J. Ekaputra and X. Lin, "SHACL4P: SHACL constraints validation within Protege ontology editor," Proceedings of 2016 International Conference on Data and Software Engineering, pp. 1-6, Denpasar, Indonesia, October 2016. DOI: 10.1109/ICODSE.2016.7936162
  21. G. C. Publio, "SHARK: A Test-Driven Framework for Design and Evolution of Ontologies," Proceedings of the 15th Extended Semantic Web Conference, pp. 314-324, Heraklion, Greece, August 2018. DOI: 10.1007/978-3-319-98192-5_50
  22. I. Boneva, J. M. L. Aparicio and S. Staworko, "ShERML: Mapping Relational Data to RDF," Proceedings of the 18th International Semantic Web Conference, pp. 213-216, Auckland, New Zealand, October 2019.
  23. D. Beckett, T. Berners-Lee, E. Prud'hommeaux and G. Carothers, "RDF 1.1 Turtle," https://www.w3.org/TR/turtle/
  24. B. Villazon-Terrazas and M. Hausenblas, "R2RML and Direct Mapping Test Cases," https://www.w3.org/TR/rdb2rdf-test-cases/
  25. J. E. L. Gayo, H. Knublauch and D. Kontokostas, "SHACL Test Suite and Implementation Report," https://w3c.github.io/data-shapes/data-shapes-test-suite/