DOI QR코드

DOI QR Code

Influences of Precipitation of Secondary Phase by Heat Treatment on Thermal Properties of Al-4.5%Cu Alloy

열처리에 따른 제2상 석출이 Al-4.5%Cu 합금의 열 물성에 미치는 영향

  • Received : 2020.06.23
  • Accepted : 2020.08.06
  • Published : 2020.08.27

Abstract

The relationship between the precipitation of secondary phase and the thermal properties of Al-4.5%Cu alloy (in wt.%) after various heat treatments has been studied. Solid solution treatment of alloy was performed at 808 K for 6 hours, followed by warm water quenching; then, the samples were aged in air at 473 K for different times. The thermal diffusivity of the Al-4.5%Cu alloy changed with the heat treatment conditions of the alloy at temperatures below 523 K. The as-quenched specimen had the lowest thermal diffusivity, and as the artificial aging time increased, the thermal diffusivity of the specimen increased in the temperature range between 298 and 523 K. For the specimen aged for five hours, the thermal conductivity was 12% higher than that of the as-quenched specimens at 298 K. It is confirmed that the thermal diffusivity and thermal conductivity of the Al-4.5%Cu alloy significantly depend on their thermal history at temperatures below 523 K. The precipitation and dissolution of the Al2Cu phase were confirmed via DSC for the alloys, and the formation of coefficient of thermal expansion peaks in TMA was caused by precipitation. The precipitation of supersaturated solid solution of Al-4.5%Cu alloys had an additional linear expansion of ≈ 0.05 % at 643 K during thermal expansion measurement.

Keywords

References

  1. M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma and T. Endo, Scr. Mater., 41, 643 (1999). https://doi.org/10.1016/S1359-6462(99)00137-2
  2. D. E. Laughlin and K. Hono, Physical Metallurgy: Volume 3, p. 2022, Elsevier, Oxford (2014).
  3. A. M. Hassan, O. M. Bataineh and K. M. Abed, J. Mater. Process. Technol., 204, 343 (2007).
  4. H. J. Kla and M. B. Llmn, Acta Metall. Sin., 47, 5 (2006).
  5. R. K. Kushwaha, S. A. Siddiquia and V. Singh, Int. J. Emerg. Technol., 4, 1 (2013).
  6. E. M. Elgallad, F. H. Samuel, A. M. Samuel and H. W. Doty, J. Mater. Process. Technol., 210, 1754 (2010). https://doi.org/10.1016/j.jmatprotec.2010.06.006
  7. M. Fatmi, B. Ghebouli, M. A. Ghebouli, T. Chihi and M. A. Hafiz, Physica B, 406, 2277 (2011). https://doi.org/10.1016/j.physb.2011.03.053
  8. D. R. Poirier and E. Mcbride, Mater. Sci. Eng., A, 224, 48 (1997). https://doi.org/10.1016/S0921-5093(96)10554-2
  9. E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa and R. MacKay, Mater. Sci. Eng., A, 648, 401 (2015). https://doi.org/10.1016/j.msea.2015.09.091
  10. M. Hamzwhei and M. Rashidi, Therm. Eng. Environ., 2006, 153 (2006).
  11. T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications, p. 21, Kluwer Academic/Plenum, New York (2004).
  12. J. E. Hatch, Aluminum: Properties and Physical Metallurgy, Aluminum Properties and Physical Metallurgy, p. 200, American Society for Metals, Ohio (2005).
  13. M. V. J. Quaresma, C. A. Santos and A. Garcia, Metall. Mater. Trans. A., 31A, 3167 (2000).
  14. Y. Li, Z. Liu, Q. Xia, S. Bai and X. Chen, Met. Mater. Int., 17, 1 (2011). https://doi.org/10.1007/s12540-011-0201-5
  15. J. R. Davis, Aluminum and Aluminum Alloys, p. 113, Joseph R. Davis, ASM International, Ohio (2001).
  16. S. K. Son, M. Takeda, M. Mitome, Y. Bando and T. Endo, Mater. Lett., 59, 629 (2005). https://doi.org/10.1016/j.matlet.2004.10.058