DOI QR코드

DOI QR Code

민감도 분석을 기반으로 한 시료의 동결 특성에 미치는 영향인자 분석

Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis

  • 고규현 (금오공과대학교 토목공학과) ;
  • 이장근 (한국건설기술연구원 극한환경연구센터) ;
  • 김민섭 (한국과학기술원 건설및환경공학과)
  • Go, Gyu-Hyun (Dept. of Civil Engrg., Kumoh National Institute of Technology) ;
  • Lee, Jangguen (Extreme Engrg. Research Center, Korea Institute of Construction and Technology) ;
  • Kim, Minseop (Dept. of Civil and Environmental Engrg., Korea Advanced Institute of Science and Technology)
  • 투고 : 2020.05.13
  • 심사 : 2020.06.01
  • 발행 : 2020.08.31

초록

동상민감성 시료의 동상 거동을 평가하기 위해 완전히 결합된 열-수리-역학 연계해석을 수행하였다. 이를 위한 구성모델은 질량보존방정식, 에너지보존방정식, 힘평형방정식을 기반으로 유도되었다. 구성모델을 통해 간극수의 상변화, 간극수 유동 및 수반되는 기계적 변형 등 1차원 동결에 대한 다양한 물리적 현상을 정량적으로 고려할 수 있었다. 한편, 시료의 동상발생량 및 동상속도에 미치는 영향 인자들을 조사하기 위해 민감도 분석 연구가 수행되었다. 민감도 분석 결과에 따르면, 시료의 초기 간극비는 종속변수인 동상발생량과 동상속도에 독립적으로 큰 영향을 미치는 반면 흙 입자 열전도도 및 온도구배는 독립적으로 미치는 영향보다 두 변수 간 상호 작용을 통해 더 큰 영향을 미침을 확인하였다. 본 연구에서 고려된 인자들은 모두 동상발생량과 동상속도에 영향을 미치는 주요 인자이며, 표본시료의 동상민감성 여부를 결정하는 데에 활용될 수 있을 것이다.

A fully coupled thermo-hydro-mechanical model is established to evaluate frost heave behaviour of saturated frost-susceptible soils. The method is based on mass conservation, energy conservation, and force equilibrium equations, which are fully coupled with each other. These equations consider various physical phenomena during one-dimensional soil freezing such as latent heat of phase change, thermal conductivity changes, pore water migration, and the accompanying mechanical deformation. Using the thermo-hydro-mechanical model, a sensitivity analysis study is conducted to examine the effects of the geotechnical parameters and external conditions on the amount of frost heave and frost heaving rate. According to the results of the sensitivity analysis, initial void ratio significantly affects each objective as an individual parameter, whereas soil particle thermal conductivity and temperature gradient affect frost heave behaviour to a greater degree when applied simultaneously. The factors considered in this study are the main factors affecting the frost heaving amount and rate, which may be used to determine the frostbite sensitivity of a new sample.

키워드

참고문헌

  1. Beskow, G. (1947), "Soil Freezing and Frost Heaving with Special Application to Roads and Railroads", Northwestern Univ.
  2. Black, P.B. (1995), "Applications of the clapeyron equation to water and ice in porous media", Cold Regions Res. & Eng. Lab., US Army Corps of Engineers.
  3. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., and Trosset, M.W. (1999), "A Rigorous Framework for Optimization of Expensive Functions by Surrogates", Structural optimization, Vol. 17, No. 1, pp. 1-13. https://doi.org/10.1007/BF01197708
  4. Chen, F.X., Song, Z.P., and Li, N. (2006), "Study on Moisture Migrating Force Model of Freezing Soil base on Adsorption-film Moisture Migration Mechanism", Journal of Water Resources and Architectural Engineering, Vol. 4, No. 3, pp. 1-4 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-1144.2006.03.001
  5. Choi, C.H. and Ko, S.G. (2011), "A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil", J. of the Korean Geotechnical Society, Vol. 27, No. 10, pp. 13-23. https://doi.org/10.7843/kgs.2011.27.10.013
  6. Croney, D. and Jacobs, J.C. (1967), The frost susceptibility of soils and road materials, No. Lr 90, Transport and Road Research Laboratory report, pp. 68-72.
  7. Everett, D.H. (1961), "The Thermodynamics of Frost Damage to Porous Solids", Trans. Faraday Soc., Vol. 57, pp. 1541-1551. https://doi.org/10.1039/tf9615701541
  8. Gilpin, R.R. (1980), "A Model for the Prediction of Ice Lensing and Frost Heave in Soils", Water Resour. Res., Vol. 16, No. 5, pp. 918-930. https://doi.org/10.1029/WR016i005p00918
  9. Henry, K.S. (2000), "A review of the thermodynamics of frost heave", CRREL, US Army Corps of Engineers.
  10. Hoekstra, P. (1966), "Moisture Movement in Soils under Temperature Gradients with the Cold-side Temperature below Freezing", Water Resour. Res. Vol. 2, No. 2, pp. 241-250. https://doi.org/10.1029/WR002i002p00241
  11. Hoffman, R.M., Sudjianto, A., Du, X., and Stout, J. (2003), Robust Piston Design and Optimization using piston secondary motion analysis (No. 2003-01-0148). SAE Technical Paper.
  12. Homma, T. and Saltelli, A. (1996), "Importance Measures in Global Sensitivity Analysis of Nonlinear Models", Reliability Engineering & System Safety, Vol. 52, No. 1, pp. 1-17. https://doi.org/10.1016/0951-8320(96)00002-6
  13. JGS 0172 (2003), Test method for frost susceptibility of soils, Japan Geotech. Soci., pp. 1-6.
  14. Jin, H.W., Ryu, B.H., and Lee, J. (2017), "Evaluation on the Reliability of Frost Susceptibility Criteria", J. of the Korean Geo-Environ. Soci., Vol. 18, No. 12, pp. 37-45. https://doi.org/10.14481/jkges.2017.18.1.37
  15. Johnson, T.C., Berg, R.L., Carey, K.L., and Kaplar, C.W. (1975), Roadway design in seasonal frost areas, Transportation Research Board and Cold Regions and Engineering Laboratory, Technical report 259, pp. 18.
  16. Kay, B.D. and Groenevelt, P.H. (1974), "On the Interaction of Water and Heat Transport in Frozen and Unfrozen Soils: I. Basic Theory; The Vapor Phase", Soil Science Society of America Journal, Vol. 38, No. 3, pp. 395-400. https://doi.org/10.2136/sssaj1974.03615995003800030011x
  17. Kim, S.Y., Kim, Y.S., Lee, J., and Lee, J.S. (2017), "An Experimental Study of Strength Evaluation in Frozen Soils according to Direct Shear Box Systems", J. of the Korean Geo-Environ. Soci., Vol. 18, No. 3, pp. 5-14. https://doi.org/10.14481/jkges.2017.18.1.5
  18. Kim, Y.S., Kang, J.M., Hong, S., and Kim, K.J. (2010), "Heat Transfer Equation and Finite Element Analysis Considering Frozen Ground Condition the Cyclic Loading", J. of Korean Geosynthetics Soci., Vol. 9, No. 3, pp. 39-45.
  19. Ko, S.G. (2012), A Study on Proportional Coefficient for Estimating Adfreeze Bond Strength using Direct Shear Test, MS thesis, University of Science and Technology.
  20. Konrad, J.M. and Duquennoi, C. (1993), "A Model for Water Transportand Ice Lensing in Freezing Soils", Water Resour. Res. Vol. 29, No. 9, pp. 3109-3124. https://doi.org/10.1029/93WR00773
  21. Konrad, J.M. and Morgenstern, N.R. (1980), "A Mechanistic Theory of Ice Lens Formation in Fine-grained Foils", Can.Geotech. J., Vol. 17, pp. 473-486. https://doi.org/10.1139/t80-056
  22. Kozeny, J. (1927). "Uber Kapillare Leitung der Wasser in Boden", Royal Academy of Science, Vienna, Proc. Class I, Vol. 136, pp. 271-306.
  23. Lai, Y., Pei, W., Zhang, M., and Zhou, J. (2014) "Study on Theory Model of Hydro-thermal-mechanical Interaction Process in Saturated Freezing Silty Soil", Int. J. Heat Mass Transfer, Vol. 78, pp. 805-819. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.035
  24. Liu, Z. and Yu, X. (2011) "Coupled Thermo-hydro-mechanical Model for Porous Materials under Frost Action: Theory and Implementation", Acta Geotechnica, Vol. 6, pp. 51-65. https://doi.org/10.1007/s11440-011-0135-6
  25. Mageau, D.W. and Morgenstern, N.R. (1980), "Observations on Moisture Migration in Frozen Soils", Can. Geotech. J. Vol. 17, No. 1, pp. 54-60. https://doi.org/10.1139/t80-005
  26. Matheron, G. (1963), "Principles of Geostatistics", Economic geology, Vol. 58, No. 8, pp. 1246-1266. https://doi.org/10.2113/gsecongeo.58.8.1246
  27. Michalowski, R.L. (1993), "A Constitutive Model of Saturated Soils for Frost Heave Simulations", Cold Region Sci. Technol. Vol. 22, No. 1, pp. 47-63. https://doi.org/10.1016/0165-232X(93)90045-A
  28. Michalowski, R.L. and Zhu, M. (2006), "Frost Heave Modelling Using Porosity Rate Function", Int. J. Numer. Anal. Meth. Geomech., Vol. 30, pp. 703-722. https://doi.org/10.1002/nag.497
  29. Nixon, J.F.D. (1991), "Discrete Ice Lens Theory for Frost Heave in Soils", Can. Geotech. J. Vol. 28, No. 8, pp. 843-859. https://doi.org/10.1139/t91-102
  30. O'Neill, K. and Miller, R.D. (1985), "Exploration of a Rigid Ice Model of Frost Heave", Water Resour. Res. Vol. 21, No. 3, pp. 281-296. https://doi.org/10.1029/WR021i003p00281
  31. Penner, E. (1959), "The Mechanism of Frost Heave in Soils", Highway Research Board Bulletin, Vol. 225, pp. 1-22.
  32. Ryu, B.H., Jin, H.W., and Lee, J. (2016), "Experimental Study of Frost Heaving using Temperature Controlled Triaxial Cell", J. of the Korean Geo-Environ. Soci., Vol. 17, No. 6, pp. 23-31. https://doi.org/10.14481/jkges.2016.17.6.23
  33. Shin, E.C. and Park, J.J. (2003), "An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils", J. of Korean Geotech. Soci., Vol. 19, No. 2, pp. 65-74.
  34. Shin, H.S., Kim, J. M., Lee, J., and Lee, S.R. (2012) "Mechanical Constitutive Model for Frozen Soil", J. of Korean Geotech. Soci., Vol. 28, No. 5, pp. 85-94. https://doi.org/10.7843/kgs.2012.28.5.85
  35. Sobol' I.M. (1993) Sensitivity analysis for nonlinear mathematical models. MathModel Comput Exp;1:407e14.
  36. Song, W.K., Kim, Y.C., and Lee, H.Y. (2003), "A Experimental and Numerical Studies of Thermal Flow Motion in a Geothermal Chamber", J. of the comput. struct. eng. inst. of Kor., Vol. 16, No. 3, pp. 219-228.
  37. Taber, S. (1929), "Frost Heaving", J. Geology, Vol. 37, pp. 428-461. https://doi.org/10.1086/623637
  38. Thomas, H.R., Cleall, P., Li, Y.C., Harris, C., and Kern-Luetschg, M. (2009), "Modeling of Cryogenic Processes in Permafrost and Seasonally Frozen Soils", Geotechnique, Vol. 59, No. 3, pp. 173-184. https://doi.org/10.1680/geot.2009.59.3.173
  39. Tice, A.R., Anderson, D.M., Banin, A. The prediction of unfrozen water contents in frozen soils from liquid limit determinations. Cold Regions Research & Engineering Laboratory, U.S. Army Corps of Engineers, 1976.
  40. Zhang, Y. and Michalowski, R.L. (2015), "Thermal-Hydro-Mechanical Analysis of Frost Heave and Thaw Settlement", J. Geotech. Geoenviron. Eng., Vol. 141, No. 7, pp. 04015027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001305
  41. Zhou, J. and Li, D. (2012) "Numerical Analysis of Coupled Water, Heat and Stress in Saturated Freezing Soil", Cold Region Sci. Technol. Vol. 72, pp. 43-49. https://doi.org/10.1016/j.coldregions.2011.11.006