DOI QR코드

DOI QR Code

Data Mining based Forest Fires Prediction Models using Meteorological Data

기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델

  • Kim, Sam-Keun (School of Computer Engineering & Applied Mathematics, Hankyong National University) ;
  • Ahn, Jae-Geun (School of Computer Engineering & Applied Mathematics, Hankyong National University)
  • 김삼근 (한경대학교 컴퓨터응용수학부(컴퓨터시스템 연구소)) ;
  • 안재근 (한경대학교 컴퓨터응용수학부(컴퓨터시스템 연구소))
  • Received : 2020.07.21
  • Accepted : 2020.08.07
  • Published : 2020.08.31

Abstract

Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

산불은 경제, 자연환경, 건강과 같은 삶의 여러 측면에서 몇 가지 악영향을 주는 가장 핵심적인 환경위험 중의 하나이다. 산불의 조기발견, 빠른 예측, 신속한 대응은 산불 위험으로부터 재산과 생명을 구하는데 본질적인 역할을 할 수 있다. 산불의 빠른 발견을 위해 기상청에서 각 지역에 설치한 로컬 센서를 통해 획득한 기상 데이터를 이용하는 방법이 있다. 기상 조건(예: 온도, 바람)은 산불 발생에 영향을 미친다고 알려져 있다. 본 논문에서는 산불의 피해 면적을 예측하기 위해 데이터 마이닝(DM) 기법을 적용한다. 다섯 종류의 DM 모델, 예를 들어 Stochastic Gradient Descent(SGD), Support Vector Machines(SVM), Decision Tree(DT), Random Forests(RF), Deep Neural Network(DNN)과 네 가지 입력 특성 그룹(공간, 시간, 기상 데이터 이용)을 최근 5년간의 경기도 지역에서 수집한 실제 산불 발생 데이터에 적용하였다. 실험결과는 기상 데이터만을 이용한 DNN 모델이 가장 우수한 성능을 보였다. 제안한 모델은 빈도수가 높은 작은 규모의 산불 예측에 더 효과적이었다. 제안한 예측 모델을 통해 도출된 이러한 지식은 소방 자원 관리를 개선하는데 특히 유용하다.

Keywords

References

  1. Samaher Al_Janabi, Ibrahim Al_Shourbaji, and Mahdi A. Salmana, "Rating and Mapping Fire Hazard in the Hardwood Hyrcanian Forests using GIS AND Expert Choice Software", Applied Computing and Informatics, Vol 14, Issue 2, pages 214-224, 2018. DOI: https://doi.org/10.1016/j.aci.2017.09.006
  2. Meteorological Agency, Forest fire statistics by year, http://www.forest.go.kr/
  3. B. Arrue, A. Ollero, and J. Matinez de Dios, "An Intelligent System for False Alarm Reduction in Infrared Forest-Fire Detection", IEEE Intelligent Systems, 15(3):64-73, 2000.
  4. J. Terradas J. Pinol and F. Lloret, "Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain", Climatic Change, 38:345-357, 1998. https://doi.org/10.1023/A:1005316632105
  5. Paulo Cortez, A.D.J.R. Morais, "A data mining approach to predict forest fires using meteorological data", Proceedings of the 13th Portuguese Conference on Artificial Intelligence (EPIA) Guimaraes Portugal, pp. 512-523, 2007. https://repositorium.sdum.uminho.pt/bitstream/1822/8039/1/fires.pdf
  6. A.M. Ozbayoglu, R. Bozer, "Estimation of the burned area in forest fires using computational intelligence techniques", Procedia Computer Science, 12, pages 282-287, 2012. DOI: https://doi.org/10.1016/j.procs.2012.09.070
  7. Faroudja Abid and Nouma Izeboudjen, "Predicting Forest Fire in Algeria Using Data Mining Techniques: Case Study of the Decision Tree Algorithm", Advanced Intelligent Systems for Sustainable Development, pp. 363-370, 2020. DOI: https://doi.org/10.1007/978-3-030-36674-2_37.
  8. Yudong Li, Zhongke Feng, Shilin Chen, Ziyu Zhao, and Fengge Wang, "Application of the Artificial Neural Network and Support Vector Machines in Forest Fire Prediction in the Guangxi Autonomous Region, China", Discrete Dynamics in Nature and Society Volume 2020, Article ID 5612650, 2020. DOI: https://doi.org/10.1155/2020/5612650
  9. Y.J. Goldarag, A. Mohammadzadeh, A.S. Ardakani, "Fire risk assessment using neural network and logistic regression", Journal of the Indian Society of Remote Sensing volume 44, pages 885-894, 2016. DOI: https://doi.org/10.1007/s12524-016-0557-6
  10. Seong-Wook Park, "Detection of forest fire burned area using Landsat satellite images and Deep learning", Pukyong National University, Department of Spatial Information Engineering, Thesis, 2020. http://pknu.dcollection.net/common/orgView/200000294613.
  11. Boris T. Polyak, "Some methods of speeding up the convergence of iteration methods", USSR Computational Mathematics and Mathematical Physics 4(5):1-17, 1964. DOI: https://doi.org/10.1016/0041-5553(64)90137-5.
  12. John Duchi, Elad Hazan, and Yoram Singer, "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization", Journal of Machine Learning Research, 12(61):2121-2159, 2011. http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.
  13. Geoffrey Hinton and Tijmen Tieleman, Slide 29 in lecture 6, 2012. https://www.cs.toronto.edu/-tijmen/csc321/slides/lecture_slides_lec6.pdf.
  14. Diederik P. Kingma and Jimmy Ba, "Adam: A Method for Stochastic Optimization", arXiv:1412.6980, 2019. https://arxiv.org/pdf/1412.6980.pdf.
  15. Korea Meteorological Administration Portal, https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56.
  16. Geocoder-Xr, https://gisdeveloper.co.kr/?p=4784.
  17. Harris Drucker, Chris J.C. Burges, Linda Kaufman, Alex Smola and Vladimir Vapoik, "Support Vector Regression Machines", Advances in Neural Information Processing Systems 9 (NIPS 1996), pp. 155-161, 1996. https://papers.nips.cc/paper/1238-support-vector-regression-machines.pdf
  18. Yann LeCun, Yoshua Bengio & Geoffrey Hinton, "Deep Learning", Nature, Vol. 521, 2015. DOI: https://doi.org/10.1038/nature14539.
  19. Scikit-Learn, https://scikit-learn.org/stable/
  20. TensofFlow, https://www.tensorflow.org/
  21. Keras, https://keras.io/.
  22. Sergey Ioffe and Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", 2015. Available From: https://arxiv.org/abs/1502.03167.
  23. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks from Overfitting", Journal of Machine Learning Research, 15(56):1929-1958, 2014. http://jmlr.org/papers/v15/srivastava14a.html.
  24. Arthur Flexer, "Statistical evaluation of neural networks experiments: Minimum requirements and current practice", In Proceedings of the 13th European Meeting on Cybernetics and Systems Research, volume 2, pp.1005-1008, Vienna, Austria, 1996. https://researchgate.net/publication/2627930_Statistical_Evaluation_of_Neural_Network_Experiments_Minimum_Requirements_and_Current_Practice.