DOI QR코드

DOI QR Code

탄소원 종류에 따른 환경친화성 생물소재인 세균 섬유소의 생산 및 특성

Production and Characteristics of Bacterial Cellulose, an Eco-Friendly Biomaterial, using Different Carbon Sources

  • 박성진 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 최승훈 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 박민주 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 이오미 (농림축산검역본부 식물검역기술개발센터) ;
  • 손홍주 (부산대학교 생명환경화학과 및 생명산업융합연구원)
  • Park, SungJin (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Choi, Seunghoon (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Park, MinJoo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, O-Mi (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
  • 투고 : 2020.06.09
  • 심사 : 2020.07.20
  • 발행 : 2020.08.31

초록

Production of Bacterial Cellulose (BC) by Gluconacetobacter sp. A5 was studied in shaken culture using different cost-effective carbon sources and its structural and mechanical properties were evaluated. Glycerol showed the highest level (7.26 g/l) of BC production, which was about three times higher than the yield in glucose medium. BC production depended not only on the decrease in pH, but also on the ability of Gluconacetobacter sp. A5 to synthesize glucose from different carbon sources and then polymerize it into BC. All BC produced from different carbon sources exhibited a three-dimensional reticulated structure consisting of ultrafine cellulose fibriles. Carbon sources did not significantly change the microfibrile structure of the resulting BC. BC produced from glucose medium had the lowest water-holding capacity, while BC from molasses medium had the highest. XRD data revealed that all BC were cellulose type I, the same as typical native cellulose. The crystalline strength of BC produced in glucose medium was the highest, and that in molasses medium was the lowest. Our results suggest that glycerol could be a potential low-cost substrate for BC production, leading to the reduction in the production cost, and also to produce BC with different mechanical properties by selecting appropriate carbon source.

키워드

참고문헌

  1. Ahn, J. H., Sang, B. I., Um, Y., 2011, Butanol production from thin stillage using Clostridium pasteurianum. Biores. Technol., 102, 4934-4937. https://doi.org/10.1016/j.biortech.2011.01.046
  2. Bodin, A., Backdahl, H., Fink, H., Gustafsson, L., Risberg, B., Gatenholm, P., 2006, Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes, Biotechnol. Bioeng., 97, 425-434. https://doi.org/10.1002/bit.21314
  3. Brown, R. M., Saxena, I. M., 2000, Cellulose biosynthesis: a model for understanding the assembly of biopolymers, Plant Physiol. Bioch., 38, 57-67. https://doi.org/10.1016/S0981-9428(00)00168-6
  4. Chawla, P. R., Bajaj, I. B., Survase, S. A., Singhal, R. S., 2009, Microbial cellulose: fermentative production and applications, Food Technol. Biotechnol., 47, 107-124.
  5. da Silva, G. P., Mack, M., Contiero, J., 2009, Glycerol: a promising and abundant carbon source for industrial microbiology, Biotechnol. Adv., 27, 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
  6. Delmer, D. P., Amor, Y., 1995, Cellulose biosynthesis, Plant Cell 7, 987-1000. https://doi.org/10.1105/tpc.7.7.987
  7. Ebrahimi, E., Babaeipour, V., Meftahi, A., Alibakhshi, S., 2017, Effects of bio-production process parameters on bacterial cellulose mechanical properties, J. Chem. Eng. Jpn., 50, 857-861. https://doi.org/10.1252/jcej.15we301
  8. Embuscado, M. E., BeMiller, N., Marks, J. S., 1996, Isolation and partial characterization of cellulose produced by Acetobacter xylinum, Food Hydrocoll., 10, 75-82. https://doi.org/10.1016/S0268-005X(96)80057-9
  9. Kersters, K., Lisdiyanti, P., Komagata, K., Swings, J., 2006, The family Acetobaceraceae: The genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter and Kozakia, in: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K. H., Stackebrandt E. (eds.), The Prokaryotes, vol. 5, 3rd ed., Springer, New York, 163-200.
  10. Keshk, S. M. A. S., Sameshima, K., 2005, Evaluation of different carbon sources for bacterial cellulose production, Afr. J. Biotechnol., 4, 478-482.
  11. Khan, T., Hyun, S. H., Park, J. K., 2007, Production of glucuronan oligosaccharides using the waste of beer fermentation broth as a basal medium, Enzyme Microb. Technol., 42, 89-92. https://doi.org/10.1016/j.enzmictec.2007.08.007
  12. Klemm, D., Schumann, D., Udhard, U., Marsch, S., 2001, Bacterial synthesized cellulose - artficial blood vessels for microsurgery, Prog. Polym. Sci., 26, 1561-1603. https://doi.org/10.1016/S0079-6700(01)00021-1
  13. Lee, K., Buldum, G., Mantalaris, A., Bismarck, A., 2014, More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites, Macromol. Biosci., 14, 10-32. https://doi.org/10.1002/mabi.201300298
  14. Miller, G. L., 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Ana. Chem., 31, 426-428. https://doi.org/10.1021/ac60147a030
  15. Morgunov, I. G., Kamzolova, S. V., Lunina, J. N., 2013, The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation, Appl. Microbiol. Biotechnol., 97, 7387-7397. https://doi.org/10.1007/s00253-013-5054-z
  16. Retegi, A., Gabilondo, N., Pena, C., Zuluaga, R., Castro, C., Ganan, P., de la Caba, K., Mondragon, I., 2010, Bacterial cellulose films with controlled microstructure - mechanical property relationships, Cellulose 17, 661-669. https://doi.org/10.1007/s10570-009-9389-7
  17. Romling, U., 2002, Molecular biology of cellulose production in bacteria, Res. Microbiol., 153, 205-212. https://doi.org/10.1016/S0923-2508(02)01316-5
  18. Ross, P., Mayer, R., Benziman, M., 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev., 55, 35-58. https://doi.org/10.1128/MMBR.55.1.35-58.1991
  19. Schramm, M., Gromet, Z., Hestrin, S., 1957, Role of hexose phosphate in synthesis of cellulose by Acetobacter xylinum, Nature, 179, 28-29. https://doi.org/10.1038/179028a0
  20. Seifert, M., Hesse, S., Kabrelian, V., Klemm, D., 2004, Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium, J. Polym. Sci., 42, 463-470.
  21. Sharma, C., Bhardwaj, N. K., 2019, Bacterial nanocellulose: present status, biomedical applications and future perspectives, Mater. Sci. Eng. C 104, 109963-109981. https://doi.org/10.1016/j.msec.2019.109963
  22. Sutherland, I. W., 1998, Novel and estabilished applications of microbial polysaccharides, Tibtech. 16, 41-46. https://doi.org/10.1016/S0167-7799(97)01139-6
  23. Vijayendra, S. V. N., Shamala, T. R., 2014, Film forming microbial biopolymers for commercial applications - a review, Crit. Rev. Biotechnol., 34, 338-357. https://doi.org/10.3109/07388551.2013.798254
  24. Watanabe, K., Tasbuchi, M., Morinaga, Y., Yoshinaga, F., 1998, Structural features and properties of bacterial cellulose produced in agitated culture, Cellulose 5, 187-200. https://doi.org/10.1023/A:1009272904582
  25. Whitney, S. E. C., Wilson, E., Webster, J., Bacic, A., Reid, J. S. G., Gidley, M. J., 2006, Effects of structural variation in xyloglucan polymers on interaction with bacterial cellulose, Am. J. Bot., 93, 1402-1414. https://doi.org/10.3732/ajb.93.10.1402
  26. Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., Uryu, M., 1989, The structure and mechanical properties of sheets prepared from bacterial cellulose, J. Mat. Sci., 24, 3141-3145. https://doi.org/10.1007/BF01139032