Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets

도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가

  • Choi, Kwang-Sou (Department of Civil Engineering, Pukyung National Univ.) ;
  • Ha, Sang-Bong (Department of Civil Engineering, Pukyung National Univ.) ;
  • Lee, Hwan-Woo (Department of Civil Engineering, Pukyung National Univ.)
  • 최광수 (부경대학교 토목공학과) ;
  • 하상봉 (부경대학교 토목공학과) ;
  • 이환우 (부경대학교 토목공학과)
  • Received : 2020.04.10
  • Accepted : 2020.05.11
  • Published : 2020.08.31


This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

본 연구의 대상은 도로 폭이 좁은 시가지에서 굴착공사 시 적용되는 장지간 주형의 연결부이다. 일반적으로 적용되고 있는 연결부에서 상부 플랜지의 단차와 피로균열 등의 문제로 연결부의 신뢰도가 저하된다. 연결부의 결함을 보완하고 안전성을 향상시킨 개선형 연결부를 개발하였다. 유한요소 기반의 상용프로그램(ABAQUS)를 이용하여 개선형 연결부의 거동을 평가하였다. 먼저, 개선형 연결부에 적용되는 고장력 볼트 연결 및 강재와 콘크리트의 합성거동을 구현하기 위한 수치해석 방법을 제안하였다. 비교논문의 실험결과와 수치해석 결과의 비교를 통하여 개선형 연결부를 해석하는데 있어 수치해석 방법의 적합성을 검증하였다. 본 연구에서 제안하는 수치해석 방법을 적용하여 개선형 연결부와 일반형 연결부가 적용된 장지간 주형을 해석하였다. 장지간 주형의 탄소성 거동과 연결부의 응력분포를 수치 해석적으로 비교분석하였다. 개선형 연결부의 도입으로 25%의 압축응력이 감소되며 구조적 성능 개선효과 및 안전성을 확인하였다.


  1. AASHTO (2017) AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials.
  2. Collins, M., Mitchell, D. (1990) Prestressed Concrete Structures, Edited by Mary, L, Prentice Hall, p.64.
  3. Ham, J.S., Hwang, W.S., Yang, S.D., Chung, J.S. (2012) An Analytical Study for the Strength of the High Tension Bolted Joints in Plate Girder, J. Korean Soc. Steel Constr., 24(4), pp.469-478.
  4. Kim, S.B., Choi, J.K., Heo, I.S. (2008) Ultimate Behavior of High-Tension Bolted Joints considering Plate Thickness and Bolt Size, J. Comput. Struct. Eng. Inst. Korea, 24(5), pp.515-524.
  5. Kwon, Y.S., Kwak, H.K., Hwang, J.Y., Kim, J.K., Kim, J.M. (2015) An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis, J. Comput. Struct. Eng. Inst. Korea, 28(2), pp.213-220.
  6. Lee, H.W., Park, E.T., Song, Y.Y., Kim, G.Y., Park, Y.J. (2014) Design Adequacy of Foundation and Connections of Mould Neam of Busan Metropolitan Railway Sasang - Hadan Line 1 Construction, Pukyong National University Industry-University Cooperation Foundation, p.104.
  7. Lee, C.W., Shin, J.C., Bang, M.S. (2004) The Study on High Tension Bolted Splice by Elasto-Plastic Analysis with Sliding and Experimental Testing, J. Korean Soc. Civil Eng. A, 24(3A), pp.439-444.
  8. Moze, P., Beg, D. (2011) Investigation of High Strength Steel Connections with Several Bolts in Double Shear, J. Constr. Steel Res., 57, pp.333-347.
  9. Ministry of Land, Infrastructure and Transport(MOLIT) (2016) Design Criteria for Bridges and other Facilities, Ministry of Land, Infrastructure and Transport.
  10. Ministry of Land, Infrastructure and Transport(MOLIT) (2017) Code for Design of steel structures, Ministry of Land, Infrastructure and Transport.
  11. Ministry of Land, Infrastructure and Transport(MOLIT) (2018) Design Criteria for Temporary Bridges and Surfaces of Roads, Ministry of Land, Infrastructure and Transport.
  12. Peter, B., Atle, G. (1990) Coefficient of Friction for Steel on Concrete at High Normal Stress, J Mater. Civil Eng., 2(1), pp.46-49.
  13. Park, Y.M., Lee, K.J., Kim, D.H., Ju, H.J. (2014) Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut, J. Korean Soc. Steel Constr., 26(6), pp.617-626.
  14. Seo, S.I. (2000) A Study on the Simplified Method to Calculate the Compressive Strength of Welded Structures, J. Weld. & Join., 18(4), pp.87-95.
  15. Simulia (2020) Discretization of Contact Pair Surfaces, Accessed March 1,
  16. Tang, M., Manocha, D., Otaduy, M., Tong, R. (2012) Countinuous Penalty Forces, ACM Trans. Graph., 31(4), Article 107(9 pages).
  17. Vinayagam, P., Sundararajan, R. (2008) Nonlinear Response of Concrete Filled Steel Tubular Composite Columns under Axial Loading, i-manager's J. Future Eng. & Technol., 4(1), pp.52-62.
  18. Yeom, S.H. (2001) Analysis of Concrete-Filled Steel Column under Axial Loading, Master's Thesis, Inha University.
  19. Yew, M.C., Chow, C.S., Yang, W.K., Chiang, K.N. (2006) The Solder on Rubber (SOR) interconnection Design and Its Leliability Assessment Based on Shear Strength Test and Finite Element Analysis, Microelectron. Reliab., 46, pp.1874-1879.