DOI QR코드

DOI QR Code

Combination of Enrichment and PCR in Rapid Semi-Quantification of Bacillus cereus in Fresh-Cut Vegetables

  • Choi, Yukyung (Risk Analysis Research Center, Sookmyung Women's University) ;
  • Lee, Sujung (Department of Food and Nutrition, Sookmyung Women's University) ;
  • Yoon, Yohan (Risk Analysis Research Center, Sookmyung Women's University)
  • Received : 2020.06.18
  • Accepted : 2020.07.29
  • Published : 2020.08.30

Abstract

Widespread consumption of fresh-cut vegetables without cooking results in ingestion of major foodborne pathogens including Bacillus cereus. In this study, we aimed to develop a method to rapidly detect B. cereus in fresh-cut vegetables by combining commercial PCR analysis with enrichment of the pathogenic levels. A mixture of B. cereus strains (KCTC1013, KCTC1014, KCTC1092, KCTC1094, and KCTC3624) was inoculated on the surface of fresh-cut cabbage lettuce (20 g) and baby leafy vegetables (10 g) to concentration 1, 2, 3, 4, and 5 log CFU/g. Eighty milliliters of TSB with 0.15% polymyxin B was used for cabbage lettuce, and 90 mL of medium was used for baby leafy vegetables and incubated at 42℃ for 0, 2, 3, 4, 5, 6, and 7 h. One milliliter of the enriched media was plated on mannitol-egg yolk-polymyxin agar for quantification, and another 1 mL was used for DNA extraction for PCR analysis. Additionally, the minimum number of sub-samples to be tested from a pack of fresh-cut vegetable samples was determined using 5 sub-samples. The results from this study showed that for detecting B. cereus in fresh-cut cabbage lettuce, 3, 4, 5, 6, and 7 h enrichment were required to at least detect 5, 4, 3, 2, and 1 log CFU/g of B. cereus, respectively. B. cereus in fresh-cut baby leafy vegetables could be detected after 2, 3, 4, 5, and 6 h of enrichment at 5, 4, 3, 2, and 1 log CFU/g, respectively, using a combination of enrichment and PCR analysis. To determine if a pack of fresh-cut vegetable is positive, the minimum number of sub-samples should be 3. These results can be used to develop a rapid detection method to semi-quantify B. cereus in fresh-cut vegetable samples combining enrichment and PCR.

신선편이채소는 주로 가열하지 않은 채로 많이 섭취되는 식품으로, 신선편이채소 섭취로 인한 식중독 사고의 위험이 지속적으로 발생하고 있다. 특히, 바실러스 세레우스는 전 세계적으로 신선편이채소에서 검출되고 있는 주요 병원성 세균이다. 본 연구에서는 신선편이채소에서 바실러스 세레우스를 신속하게 검출하기 위해 증균배양과 PCR 분석법을 조합하여 반정량 신속검출법을 개발하였다. 신선편이 양상추와 어린잎채소를 대상으로, 바실러스 세레우스 균주(KCTC1013, KCTC1014, KCTC1092, KCTC1094, KCTC3624)의 최종농도가 1, 2, 3, 4, 5 log CFU/g이 되도록 접종시킨 후 0.15% polymyxin B를 포함한 TSB 배지를 이용하여 42℃에서 0, 2, 3, 4, 5, 6, 7 시간 동안 증균배양하였다. 증균배양액 1 mL을 취하여 mannitol-egg yolk-polymyxin agar에 배양한 후 균수를 정량하였고, 1 mL의 증균배양액에서 DNA를 추출한 후 PCR 분석을 진행하였다. 또한, 신선편이채소 시료(sample)에 대한 바실러스 세레우스 검출결과를 정확하게 판단하기 위해 신선편이채소 시료(sample)의 최소분석 sub-sample수를 확인하고자, 5개의 sub-sample을 이용하여 분석하였다. 증균배양과 PCR 분석법을 이용하여 확인한 연구결과, 신선편이 양상추에 접종되어 있는 5, 4, 3, 2, 1 log CFU/g의 바실러스 세레우스는 3, 4, 5, 6, 7 시간 증균배양 후에 검출되었고, 신선편이 어린잎채소에 접종되어 있는 5, 4, 3, 2, 1 log CFU/g의 바실러스 세레우스는 2, 3, 4, 5 시간동안 증균 배양한 후에 검출되었다. 또한, 신선편이채소 시료(sample)의 최소분석 sub-sample수는 3개로 확인되었다. 본 연구결과는 신선편이채소에 오염되어 있는 바실러스 세레우스의 반정량 신속검출법으로 활용될 수 있을 것이라 판단된다.

Keywords

References

  1. Valero, M., Hernandez-Herrero, L.A., Giner, M.J., Survival, isolation and characterization of a psychrotrophic Bacillus cereus strain from a mayonnaise-based ready-to-eat vegetable salad. Food Microbiol., 24, 671-677 (2007). https://doi.org/10.1016/j.fm.2007.04.005
  2. Pareek, S., 2016. Technologies to preserve fresh-cut fruits and vegetables, in fresh-cut fruits and vegetables: technology, physiology, and safety. CRC Press, Boca Raton, FL, USA, pp. 33-76.
  3. Roberts, D., Watson, G.N., Gilbert, R.J., Contamination of food plants and plant products with bacteria of public health significance. Soc. Appl. Bacteriol. Symp. Ser., 10, 169-195 (1982).
  4. Becker, B., Stoll, D., Schulz, P., Kulling, S., Huch, M., Microbial contamination of organically and conventionally produced fresh vegetable salads and herbs from retail markets in Southwest Germany. Foodborne Pathog. Dis., 16, 269-275 (2019). https://doi.org/10.1089/fpd.2018.2541
  5. Kim, H.J., Koo, M., Hwang, D., Choi, J.H., Kim, S.M., Oh, S.W., Contamination patterns and molecular typing of Bacillus cereus in fresh-cut vegetable salad processing. Appl. Biol. Chem., 59, 573-577 (2016). https://doi.org/10.1007/s13765-016-0198-z
  6. Chon, J.W., Yim, J.H., Kim, H.S., Kim, D.H., Kim, H., Oh, D.H., Kim, S.-K., Seo, K.H., Quantitative prevalence and toxin gene profile of Bacillus cereus from ready-to-eat vegetables in South Korea. Foodborne Pathog. Dis., 12, 795-799 (2015). https://doi.org/10.1089/fpd.2015.1977
  7. Tallent, S.M., Rhodehamel, E.J., Harmon, S.M., Bennett, R.W., (2020, April 1). BAM: Bacillus cereus, in Bacteriological analytical manual. Retrieved from https://www.fda.gov/ food/laboratory-methods-food/bam-chapter-14-bacillus-cereus
  8. Law, J.W.F., Ab Mutalib, N.S., Chan, K.G., Lee, L.H., Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol., 5, 770 (2015). https://doi.org/10.3389/fmicb.2014.00770
  9. Choi, Y., Lee, S., Lee, H., Lee, S., Kim, S., Lee, J., Ha, J., Oh, H., Lee, Y., Kim, Y., Yoon, Y., Rapid detection of Escherichia coli in fresh foods using a combination of enrichment and PCR analysis. Food Sci. Anim. Resour., 38, 829-834 (2018). https://doi.org/10.5851/kosfa.2018.e19
  10. EFSA Panel on Biological Hazards (BIOHAZ), Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J., 14, e04524 (2016).
  11. Lee, S., Choi, Y., Lee, H., Kim, S., Lee, J., Ha, J., Oh, H., Lee, Y., Kim, Y., Yoon, Y., Lee, S., Combination of hydrophobic filtration and enrichment methods for detecting Bacillus cereus in fresh-cut cabbage. J. Food Hyg. Saf., 33, 325-329 (2018). https://doi.org/10.13103/JFHS.2018.33.5.325
  12. Maher, N., Dillon, H.K., Vermund, S.H., Unnasch, T.R., Magnetic bead capture eliminates PCR inhibitors in samples collected from the airborne environment, permitting detection of Pneumocystis carinii DNA. Appl. Environ. Microbiol., 67, 449-452 (2001). https://doi.org/10.1128/AEM.67.1.449-452.2001
  13. Hyeon, J.Y., Hwang, I.G., Kwak, H.S., Park, C., Choi, I.S., Seo, K.H., Evaluation of PCR inhibitory effect of enrichment broths and comparison of DNA extraction methods for detection of Salmonella Enteritidis using real-time PCR assay. J. Vet. Sci., 11, 143-149 (2010). https://doi.org/10.4142/jvs.2010.11.2.143
  14. Rossen, L., Norskov, P., Holmstrom, K., Rasmussen, O.F., Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int. J. Food Microbiol., 17, 37-45 (1992). https://doi.org/10.1016/0168-1605(92)90017-W
  15. Wilson, I.G., Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol., 63, 3741-3751 (1997). https://doi.org/10.1128/AEM.63.10.3741-3751.1997
  16. Kim, J.H., Yoo, J.G., Ham, J.S., Oh, M.H., Direct detection of Escherichia coli, Staphylococcus aureus, and Salmonella spp. in animal-derived foods using a magnetic bead-based immunoassay. Food Sci. Anim. Resour., 38, 727-736 (2018). https://doi.org/10.5851/kosfa.2018.e11
  17. Kim, H., Lee, Y., Beuchat, L.R., Yoon, B.J., Ryu, J.H., Microbiological examination of vegetable seed sprouts in Korea. J. Food Prot., 72, 856-859 (2009). https://doi.org/10.4315/0362-028X-72.4.856
  18. Odumeru, J.A., Mitchell, S.J., Alves, D.M., Lynch, J.A., Yee, A.J., Wang, S.L., Styliadis, S., Farber, J.M., Assessment of the microbiological quality of ready-to-use vegetables for health-care food services. J. Food Prot., 60, 954-960 (1997). https://doi.org/10.4315/0362-028X-60.8.954