DOI QR코드

DOI QR Code

Biofilm Formation, Antimicrobial Peptide Resistance, and Hydrogen Peroxide Resistance in Livestock-Associated Staphylococcus aureus Isolates

  • Lee, Gi Yong (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Sun Do (Department of Animal Science and Technology, Chung-Ang University) ;
  • Yang, Soo-Jin (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2020.05.14
  • Accepted : 2020.07.09
  • Published : 2020.08.30

Abstract

Human infections with livestock-associated methicillin-resistant/-susceptible Staphylococcus aureus (LA-MRSA/LA-MSSA) have recently been increasing significantly. These LA-MRSA and LA-MSSA strains can be transmitted to individuals who have frequent contact with livestock animals and foods of animal origin. In this study, major virulence potentials of S. aureus such as biofilm formation, antimicrobial peptide resistance, and in vitro hydrogen peroxide (H2O2) resistance were assessed using 20 MRSA and MSSA strains isolated from raw milk, beef cattle, and workers in the livestock industry. Static biofilm formation assays revealed that there is no difference in levels of biofilm production between MRSA versus MSSA or bovine- versus human-associated strains. In vitro BMAP (bovine myeloid antimicrobial peptide)-28 susceptibility assays also revealed no difference in the resistance to the antimicrobial peptide between MRSA versus MSSA or bovine- versus human-associated S. aureus strains. However, LA-MRSA strains displayed increased resistance to H2O2, which may play an important role in survival and dissemination of the pathogen in livestock. These results provide an important basis for understanding pathogenic potentials of LA-MRSA and LA-MSSA strains in human and animal hosts.

최근 가축에서 유래된 메티실린에 내성이 있는 황색포도상구균과 감수성을 보이는 황색포도상구균(LA-MRSA/LA-MSSA)에 의한 사람의 감염증이 증가하는 추세이다. 이러한 LA-MRSA 및 LA-MSSA균주는 가축을 비롯한 축산업에 종사하는 사람들에게 전파가 이루어질 수 있다. 본 연구에서는 원유, 육우, 축산 종사자에서 분리된 20개의 MRSA 및 MSSA 균주를 이용하여 생물막 형성, 항균 펩타이드에 대한 저항성 및 과산화수소 저항성과 같은 황색포도상구균의 주요 병원성 인자를 평가하였다. 생물막 형성 실험에서는 MRSA와 MSSA간의 차이는 없었으며, 동물 유래 분리주와 사람 유래 분리주들 간의 비교에서도 차이가 없음이 확인되었다. BMAP-28에 대한 감수성 시험 결과 MRSA-MSSA 또는 동물 분리-사람 분리 간의 차이가 없음을 확인하였다. 생물막 형성과 BMAP-28 감수성과는 달리, 원유에서 분리된 MRSA 균주들의 H2O2에 대한 내성 증가가 확인 되었다. 본 연구를 통하여 가축 및 축산업 종사자에서 분리된 LA-MRSA와 LA-MSSA 균주의 주요 병원성 인자를 확인하였으며, 숙주 및 환경에서의 생존과 전파 가능성을 이해하는데 기초 자료로 활용 될 수 있을 것이다.

Keywords

References

  1. Turner, N.A., Sharma-Kuinkel, B.K., Maskarinec, S.A., Eichenberger, E.M., Shah, P.P., Carugati, M., Methicillinresistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol., 17(4), 203-18 (2019). https://doi.org/10.1038/s41579-018-0147-4
  2. Okuma, K., Iwakawa, K., Turnidge, J.D., Grubb, W.B., Bell, J.M., O'Brien, F.G., Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol., 40(11), 4289-94 (2002). https://doi.org/10.1128/JCM.40.11.4289-4294.2002
  3. Naimi, T.S., LeDell, K.H., Como-Sabetti, K., Borchardt, S.M., Boxrud, D.J., Etienne, J., Comparison of communityand health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA, 290(22), 2976-84 (2003). https://doi.org/10.1001/jama.290.22.2976
  4. Back, S.H., Eom, H.S., Lee, H.H., Lee, G.Y., Park, K.T., Yang, S.J., Livestock-associated methicillin-resistant Staphylococcus aureus in Korea: antimicrobial resistance and molecular characteristics of LA-MRSA strains isolated from pigs, pig farmers, and farm environment. J. Vet. Sci., 21(1), e2 (2020). https://doi.org/10.4142/jvs.2020.21.e2
  5. Eom, H.S., Back, S.H., Lee, H.H., Lee, G.Y., Yang, S.J., Prevalence and characteristics of livestock-associated methicillin- susceptible Staphylococcus aureus in the pork production chain in Korea. J. Vet. Sci., 20(6), e69 (2019). https://doi.org/10.4142/jvs.2019.20.e69
  6. Vincze, S., Brandenburg, A.G., Espelage, W., Stamm, I., Wieler, L.H., Kopp, P.A., Risk factors for MRSA infection in companion animals: results from a case-control study within Germany. Int. J. Med. Microbiol., 304(7), 787-93 (2014). https://doi.org/10.1016/j.ijmm.2014.07.007
  7. Moon, D.C., Jeong, S.K., Hyun, B.H., Lim, S.K., Prevalence and characteristics of methicillin-resistant Staphylococcus aureus Isolates in pigs and pig farmers in Korea. Foodborne Pathog Dis., 16(4), 256-61 (2019). https://doi.org/10.1089/fpd.2018.2509
  8. Moon, D.C., Tamang, M.D., Nam, H.M., Jeong, J.H., Jang, G.C., Jung, S.C., Identification of livestock-associated methicillin- resistant Staphylococcus aureus isolates in Korea and molecular comparison between isolates from animal carcasses and slaughterhouse workers. Foodborne Pathog Dis., 12(4), 327-34 (2015). https://doi.org/10.1089/fpd.2014.1868
  9. Kim, Y.B., Seo, K.W., Jeon, H.Y., Lim, S.K., Lee, Y.J., Characteristics of the antimicrobial resistance of Staphylococcus aureus isolated from chicken meat produced by different integrated broiler operations in Korea. Poult Sci., 97(3), 962-9 (2018). https://doi.org/10.3382/ps/pex357
  10. Osman, K.M., Amer, A.M., Badr, J.M., Saad, A.S., Prevalence and antimicrobial resistance profile of Staphylococcus species in chicken and beef raw meat in Egypt. Foodborne Pathog Dis., 12(5), 406-13 (2015). https://doi.org/10.1089/fpd.2014.1882
  11. Zhang, Y., Wang, Y., Cai, R., Shi, L., Li, C., Yan, H., Prevalence of enterotoxin genes in Staphylococcus aureus isolates from pork production. Foodborne Pathog Dis., 15(7), 437-43 (2018). https://doi.org/10.1089/fpd.2017.2408
  12. Song, J.W., Yang, S.J., Shin, S., Seo, K.S., Park, Y.H., Park, K.T., Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus isolated from bovine mastitic milk in Korea. J. Food Prot., 79(10), 1725-32 (2016). https://doi.org/10.4315/0362-028X.JFP-16-067
  13. Lee, H.H., Lee, G.Y., Eom, H.S., Yang, S.J., Occurrence and characteristics of methicillin-resistant and -susceptible Staphylococcus aureus isolated from the beef production chain in Korea. Food Sci. Anim. Resour., 40(3), 401-14 (2020). https://doi.org/10.5851/kosfa.2020.e20
  14. Price, L.B., Stegger, M., Hasman, H., Aziz, M., Larsen, J., Andersen, P.S., Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio., 3(1), e00305-11 (2012).
  15. Schijffelen, M.J., Boel, C.H., van Strijp, J.A., Fluit, A.C., Whole genome analysis of a livestock-associated methicillin- resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genomics., 11, 376 (2010). https://doi.org/10.1186/1471-2164-11-376
  16. He, L., Zheng, H.X., Wang, Y., Le, K.Y., Liu, Q., Shang, J., Detection and analysis of methicillin-resistant humanadapted sequence type 398 allows insight into communityassociated methicillin-resistant Staphylococcus aureus evolution. Genome Med., 10(1), 5 (2018). https://doi.org/10.1186/s13073-018-0514-9
  17. Smith, T.C., Male, M.J., Harper, A.L., Kroeger, J.S., Tinkler, G.P., Moritz, E.D., Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS One., 4(1), e4258 (2009). https://doi.org/10.1371/journal.pone.0004258
  18. Pirolo, M., Visaggio, D., Gioffre, A., Artuso, I., Gherardi, M., Pavia, G., Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob Resist Infect Control., 8, 187 (2019). https://doi.org/10.1186/s13756-019-0650-z
  19. Pompilio, A., De Nicola, S., Crocetta, V., Guarnieri, S., Savini, V., Carretto, E., New insights in Staphylococcus pseudintermedius pathogenicity: antibiotic-resistant biofilm formation by a human wound-associated strain. BMC Microbiol., 15, 109 (2015). https://doi.org/10.1186/s12866-015-0449-x
  20. Takagi, S., Hayashi, S., Takahashi, K., Isogai, H., Bai, L., Yoneyama, H., Antimicrobial activity of a bovine myeloid antimicrobial peptide (BMAP-28) against methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Anim. Sci. J., 83(6), 482-6 (2012). https://doi.org/10.1111/j.1740-0929.2011.00979.x
  21. Giacometti, A., Cirioni, O., Ghiselli, R., Bergnach, C., Orlando, F., D'Amato, G., The antimicrobial peptide BMAP- 28 reduces lethality in mouse models of staphylococcal sepsis. Crit Care Med., 32(12), 2485-90 (2004). https://doi.org/10.1097/01.CCM.0000148221.09704.22
  22. Xiong, Y.Q., Mukhopadhyay, K., Yeaman, M.R., Adler- Moore, J., Bayer, A.S., Functional interrelationships between cell membrane and cell wall in antimicrobial peptide- mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother, 49(8), 3114-21 (2005). https://doi.org/10.1128/AAC.49.8.3114-3121.2005
  23. Liu, G.Y., Essex, A., Buchanan, J.T., Datta, V., Hoffman, H.M., Bastian, J.F., Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med., 202(2), 209-15 (2005). https://doi.org/10.1084/jem.20050846
  24. Mama, O.M., Morales, L., Ruiz-Ripa, L., Zarazaga, M., Torres, C., High prevalence of multidrug resistant S. aureus- CC398 and frequent detection of enterotoxin genes among non-CC398 S. aureus from pig-derived food in Spain. Int. J. Food Microbiol., 320, 108510 (2020). https://doi.org/10.1016/j.ijfoodmicro.2020.108510
  25. Sieber, R.N., Skov, R.L., Nielsen, J., Schulz, J., Price, L.B., Aarestrup, F.M., Drivers and dynamics of methicillin-resistant livestock-associated Staphylococcus aureus CC398 in pigs and humans in Denmark. Mbio., 9(6), e02142-18 (2018).
  26. Iqbal, Z., Seleem, M.N., Hussain, H.I., Huang, L., Hao, H., Yuan, Z., Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci. Rep., 6, 35442 (2016). https://doi.org/10.1038/srep35442
  27. Abdalrahman, L.S., Stanley, A., Wells, H., Fakhr, M.K., Isolation, virulence, and antimicrobial resistance of methicillinresistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA) strains from Oklahoma retail poultry meats. Int. J. Environ. Res. Public Health, 12(6), 6148-61 (2015). https://doi.org/10.3390/ijerph120606148
  28. Randad, P.R., Dillen, C.A., Ortines, R.V., Mohr, D., Aziz, M., Price, L.B., Comparison of livestock-associated and community-associated Staphylococcus aureus pathogenicity in a mouse model of skin and soft tissue infection. Sci. Rep., 9(1), 6774 (2019). https://doi.org/10.1038/s41598-019-42919-y
  29. Sanchez, C.J., Jr. Mende, K., Beckius, M.L., Akers, K.S., Romano, D.R., Wenke, J.C., Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis., 13, 47 (2013). https://doi.org/10.1186/1471-2334-13-47
  30. Archer, N.K., Mazaitis, M.J., Costerton, J.W., Leid, J.G., Powers, M.E., Shirtliff, M.E., Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2(5), 445-59 (2011). https://doi.org/10.4161/viru.2.5.17724
  31. Neopane, P., Nepal, H.P., Shrestha, R., Uehara, O., Abiko, Y., In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med., 11, 25-32 (2018). https://doi.org/10.2147/IJGM.S153268
  32. Thurlow, L.R., Hanke, M.L., Fritz, T., Angle, A., Aldrich, A., Williams, S.H., Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol., 186(11), 6585-96 (2011). https://doi.org/10.4049/jimmunol.1002794
  33. Srey, S., Jahid, I.K., Ha, S.D., Biofilm formation in food industries: A food safety concern. Food Control., 31(2), 572-85 (2013). https://doi.org/10.1016/j.foodcont.2012.12.001
  34. Stefanetti, V., Bietta, A., Pascucci, L., Marenzoni, M.L., Coletti, M., Franciosini, M.P., Investigation of the antibiotic resistance and biofilm formation of Staphylococcus pseudintermedius strains isolated from canine pyoderma. Vet Ital., 53(4), 289-96 (2017).
  35. McCarthy, H., Rudkin, J.K., Black, N.S., Gallagher, L., O'Neill, E., O'Gara, J.P., Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol., 5, 1 (2015). https://doi.org/10.3389/fcimb.2015.00001
  36. Scheenstra, M.R., van den Belt M., Tjeerdsma-van Bokhoven, J.L.M., Schneider, V.A.F., Ordonez, S.R., van Dijk, A., Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Sci. Rep., 9(1), 4780 (2019). https://doi.org/10.1038/s41598-019-41246-6
  37. Ernst, C.M., Staubitz, P., Mishra, N.N., Yang, S.J., Hornig, G., Kalbacher, H., The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog., 5(11), e1000660 (2009). https://doi.org/10.1371/journal.ppat.1000660
  38. Peschel, A., Jack, R.W., Otto, M., Collins, L.V., Staubitz, P., Nicholson, G., Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 193(9), 1067-76 (2001). https://doi.org/10.1084/jem.193.9.1067
  39. Peschel, A., Collins, L.V., Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin. Peptides, 22(10),1651-9 (2001). https://doi.org/10.1016/S0196-9781(01)00500-9
  40. Buchan, K.D., Foster, S.J., Renshaw, S.A., Staphylococcus aureus: setting its sights on the human innate immune system. Microbiology. 165(4), 367-85 (2019). https://doi.org/10.1099/mic.0.000759
  41. Rowe, S.E., Wagner, N.J., Li, L., Beam, J.E., Wilkinson, A.D., Radlinski, L.C., Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat. Microbiol., 5(2), 282-90 (2020). https://doi.org/10.1038/s41564-019-0627-y
  42. Amenu, K., Grace, D., Nemo, S., Wieland, B., Bacteriological quality and safety of ready-to-consume milk and naturally fermented milk in Borana pastoral area, southern Ethiopia. Trop Anim Health Prod., 51(7), 2079-84 (2019). https://doi.org/10.1007/s11250-019-01872-8