DOI QR코드

DOI QR Code

Enhanced Electrocatalytic Activity of Low Ni Content Nano Structured NiPd Electrocatalysts Prepared by Electrodeposition Method for Borohydride Oxidation

  • Received : 2019.07.20
  • Accepted : 2019.09.30
  • Published : 2020.08.31

Abstract

Some nano structured bimetallic NiPd electrocatalysts were electrodeposited on glassy carbon electrodes using a double potential step chronoamperometry. The morphology of the electrodeposited samples was investigated by field emission-scanning electron microscopy, while their compositions were evaluated using energy dispersive X-ray spectroscopy. It was observed that the electrodeposited samples contained a low Ni content, in the range of 0.80 - 7.10%. The electrodeposited samples were employed as the anode electro-catalysts for the oxidation of sodium borohydride in NaOH solution (1.0 M) using cyclic voltammetry, chronoamperometry, rotating disk electrode, and impedance spectroscopy. The number of exchanged electrons, charge transfer resistances, apparent rate constants, and double layer capacitances were calculated for the oxidation of borohydride on the prepared catalysts. According to the results obtained, the NiPd-2 sample with the lowest Ni content (0.80%), presented the highest catalytic activity for borohydride oxidation compared with the other NiPd samples as well as the pure Pd sample. The anodic peak current density was obtained to be about 1.3 times higher on the NiPd-2 sample compared with that for the Pd sample.

Keywords

References

  1. C. PoncedeLeon, F.C. Walsh, A. Rose, J.B. Lakeman, D.J. Browning, R.W. Reeve, J. Power Sources., 2007, 164(2), 441-448. https://doi.org/10.1016/j.jpowsour.2006.10.069
  2. M.H. Atwan, C.L.B. Macdonald, D.O. Northwood, E.L. Gyenge, J. Power Sources., 2006, 158(1), 36-44. https://doi.org/10.1016/j.jpowsour.2005.09.054
  3. Z.P. Li, B.H. Liu, K Arai., K. Asaba, S. Suda, J. Power Sources., 2004, 126(1-2), 28-33. https://doi.org/10.1016/j.jpowsour.2003.08.017
  4. H. Cheng, K. Scott, J. Power Sources., 2006, 160(1), 407-412. https://doi.org/10.1016/j.jpowsour.2006.01.097
  5. B.H. Liu, S. Suda, J. Power Sources., 2007, 164(1), 100-104. https://doi.org/10.1016/j.jpowsour.2006.09.107
  6. D.M.F. Santos, C.A.C. Sequeira, Renew. Sust. Energ. Rev., 2011, 15(8), 3980-4001. https://doi.org/10.1016/j.rser.2011.07.018
  7. L.B. Wang, C.A. Ma,. X.B. Mao, J.F. Sheng, F.Z. Bai, F. Tang, Electrochem. Commun., 2005, 7(12), 1477-1481. https://doi.org/10.1016/j.elecom.2005.10.012
  8. J. Ma, N.A. Choudhury, Y. Sahai, Renew. Sust. Enery. Rev., 2010, 14, 183-199. https://doi.org/10.1016/j.rser.2009.08.002
  9. I. Merino-Jimenez, M.J. Janik, C. Ponce de Leon, F.C Walsh, J. Power Sources., 2014, 269, 498-508. https://doi.org/10.1016/j.jpowsour.2014.06.140
  10. D.X. Cao, D.D. Chen, J. Lan, G.L. Wang, J. Power Sources., 2009, 190(2), 346-350. https://doi.org/10.1016/j.jpowsour.2008.12.134
  11. J. Liu, H. Wang, C. Wu, Q. Zhao, X. Wang, L. Yi, Int. J. Hydrogen Energ., 2014, 39, 6729-6736. https://doi.org/10.1016/j.ijhydene.2014.01.200
  12. D. Zhang, G. Wang, Y. Yuan, Y. Li, S. Jiang, Y. Wang, K. Ye, D. Cao, P. Yan, K. Cheng, Int. J. Hydrogen Energ., 2016, 41(27), 11593-11598. https://doi.org/10.1016/j.ijhydene.2016.04.106
  13. D. Zhang, G. Wang, K. Cheng, J. Huang, P. Yan, D. Cao, J. Power Sources., 2014, 245, 482-486. https://doi.org/10.1016/j.jpowsour.2013.06.161
  14. E. Gyenge, Electrochim. Acta., 2004, 49(6), 965-978. https://doi.org/10.1016/j.electacta.2003.10.008
  15. J.H. Kim, H.S. Kim, Y.M. Kang, M.S. Song, S. Rajendran, S.C. Han, D.H. Jung, J.Y. Lee, J. Electrochem. Soc., 2004, 151(7), A1039-1043. https://doi.org/10.1149/1.1756351
  16. B. Molina Concha, M. Chatenet, Electrochim. Acta., 2009, 54, 6119-6129. https://doi.org/10.1016/j.electacta.2009.05.027
  17. B. Molina Concha, M. Chatenet, Electrochim. Acta., 2009, 54, 6130-6139. https://doi.org/10.1016/j.electacta.2009.04.074
  18. E. Sanli, H. Celikkan, B. Zuhtu Uysal, M.L. Aksu, Int .J. Hydrogen Energ., 2006, 31(13), 1920-1924. https://doi.org/10.1016/j.ijhydene.2006.04.003
  19. M. Chatenet, F. Micoud, I. Roche, E. Chainet, Electrochim. Acta., 2006, 51, 5459-5467. https://doi.org/10.1016/j.electacta.2006.02.015
  20. S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman, M. Binder, J. Power Sources., 1999, 84(1), 130-133. https://doi.org/10.1016/S0378-7753(99)00259-1
  21. H. Cheng, K. Scott,. Electrochim. Acta., 2006, 51(17), 3429-3433. https://doi.org/10.1016/j.electacta.2005.09.038
  22. D.X. Cao, Y.Y Gao, G.L. Wang, R.R. Miao, Y. Liu, Int. J. Hydrogen Energ., 2010, 35(2), 807-813. https://doi.org/10.1016/j.ijhydene.2009.11.026
  23. C. Cenk, F.G. Boyaci San, H.I. Sarac, J. Power Sources., 2008, 185(1), 197-201. https://doi.org/10.1016/j.jpowsour.2008.06.066
  24. J.Q. Yang, B.H. Liu, S. Wu, J. Power Sources., 2009, 194(2), 824-829. https://doi.org/10.1016/j.jpowsour.2009.06.034
  25. M.H. Atwan, D.O. Northwood, E.L. Gyenge, Int. J. Hydrogen Energ., 2005, 30(12), 1323-1331. https://doi.org/10.1016/j.ijhydene.2005.04.010
  26. B.H. Liu, Z.P. Li, S. Suda, J. Electrochem. Soc., 2003, 150(3), A398-402. https://doi.org/10.1149/1.1553785
  27. K.L. Wang, J.T. Lu, L. Zhuang, J. Phys. Chem. C., 2007, 111(20), 7456-7462. https://doi.org/10.1021/jp0710483
  28. D.H. Duan, S.B. Liu, Y.P. Sun, J. Power Sources., 2012, 210, 198-203. https://doi.org/10.1016/j.jpowsour.2012.03.032
  29. D.M.F. Santos, C.A.C., J. Electrochem. Soc., 2010, 157(1), B13-B19. https://doi.org/10.1149/1.3247540
  30. B.H. Liu, Z.P. Li, S. Suda, Electrochim. Acta., 2004, 49(19), 3097-3105. https://doi.org/10.1016/j.electacta.2004.02.023
  31. D.H Duan, X. You, J. Liang, S. Liu, Y. Wang, Electrochim. Acta., 2015, 176, 1126-1135. https://doi.org/10.1016/j.electacta.2015.07.118
  32. M. Martins, B. Sljukic, O. Metin, M. Sevin, C.A.C. Sequera, T. Sener, D M.F. Santos, J. Alloys Compd., 2017, 718, 204-214. https://doi.org/10.1016/j.jallcom.2017.05.058
  33. G. Behmenyar, A.N. Akin, J. Power Sources., 2014, 249, 239-246. https://doi.org/10.1016/j.jpowsour.2013.10.063
  34. M. Zhiani, I. Mohammadi, Fuel, 2016, 166, 517-525. https://doi.org/10.1016/j.fuel.2015.11.016
  35. R Awasthi, RN. Anindita, Singh, Open Catal. J., 2010, 3(1), 70-78. https://doi.org/10.2174/1876214X01003010070
  36. MG. Hosseini, M. Abdolmaleki, Int. J. Hydrogen Energ., 2013, 38(13), 5449-5456. https://doi.org/10.1016/j.ijhydene.2012.09.051
  37. J. Bagchi, S.K. Bhattacharya, Transit. Metal. Chem., 2008, 33(1), 113-120. https://doi.org/10.1007/s11243-007-9021-3
  38. J.T. Zhang, M.H. Huang, H.Y. Ma, F. Tian, W. Pan, S.H. Chen, Electrochem. Commun., 2007, 9(6), 1298-1304. https://doi.org/10.1016/j.elecom.2007.01.038
  39. M.A. Abdel Rahim, H.B. Hassan, R.M. Abdel Hamid, J. Power Sources., 2006, 154(1), 59-65. https://doi.org/10.1016/j.jpowsour.2005.03.198
  40. J.I. Martins, M.C. Nunes, R. Koch, L. Martins, M. Bazzaoui, Electrochim. Acta., 2007, 52(23), 6443-6449. https://doi.org/10.1016/j.electacta.2007.04.066
  41. E. Gyenge, Electrochim. Acta., 2004, 49(6), 965-978. https://doi.org/10.1016/j.electacta.2003.10.008
  42. B. Molina Concha, B. M. Chatenet, Electrochim. Acta., 2009, 54(26), 6119-6129. https://doi.org/10.1016/j.electacta.2009.05.027
  43. Southampton Electrochemistry Group. Instrumental Methods in Electrochemistry. Chichester: Ellis Horwood Limited, 1985.
  44. A.Tegoua, S.Papadimitrioua, I.Mintsoulia, S.Armyanovb, E. Valovab, G. Kokkinidisa, S. Sotiropoulosa, Catal. Today., 2011, 170, 126-133. https://doi.org/10.1016/j.cattod.2011.01.003
  45. J. Koutecky, J.V.G. Levich, Zh. Fiz. Khim., 1958, 32(7), 1565-1575.
  46. M. Simoes, S. Baranton, C. Cou tanceau, J. Phys. Chem. C., 2009, 113(30), 13369-13376. https://doi.org/10.1021/jp902741z
  47. M. Chatenet, F. Micoud, I. Roche, E. Chainet, Electrochim. Acta., 2006, 51, 5459-5467. https://doi.org/10.1016/j.electacta.2006.02.015
  48. M. Simoes, S. Baranton, C. Coutanceau, Electrochim. Acta., 2010, 56(1), 580-591. https://doi.org/10.1016/j.electacta.2010.09.006
  49. J..L Wei., X.Y. Wang, Y. Wang, Q.Q. Chen, F. Pei, Y.S. Wang, Int. J. Hydrogen Energ., 2009, 34, 3360-3366. https://doi.org/10.1016/j.ijhydene.2009.02.014
  50. MG. Hosseini, M. Abdolmaleki, S. Ashrafpoor, Chin. J. Catal., 2012, 33(11-22), 1817-1824. https://doi.org/10.1016/S1872-2067(11)60464-6
  51. MG. Hosseini, R. Mahmoodi, J. Colloid Interf. Sci., 2017, 500, 264-275. https://doi.org/10.1016/j.jcis.2017.04.016
  52. R. Valiollahi, R. Ojani, JB. Raoof, Electrochim. Acta., 2016, 191, 230-236. https://doi.org/10.1016/j.electacta.2016.01.082
  53. F. Gobal, M. Faraji, Electrochim. Acta., 2013, 100, 133-139. https://doi.org/10.1016/j.electacta.2013.03.155