DOI QR코드

DOI QR Code

Single-cell and spatial transcriptomics approaches of cardiovascular development and disease

  • Roth, Robert (Department of Biology, Stanford University) ;
  • Kim, Soochi (Department of Neurology and Neurological Sciences, Stanford University School of Medicine) ;
  • Kim, Jeesu (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Rhee, Siyeon (Department of Biology, Stanford University)
  • Received : 2020.05.25
  • Published : 2020.08.31

Abstract

Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.

Keywords

References

  1. Lipsett DB, Frisk M, Aronsen JM et al (2019) Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J Physiol 597, 1833-1853 https://doi.org/10.1113/jp277273
  2. Eberwine J, Sul JY, Bartfai T and Kim J (2014) The promise of single-cell sequencing. Nat Methods 11, 25-27 https://doi.org/10.1038/nmeth.2769
  3. Olsen TK, Baryawno N (2018) Introduction to single-cell RNA sequencing. Curr Protoc Mol Biol 122, 1-14
  4. Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6, 377-382 https://doi.org/10.1038/nmeth.1315
  5. Chen G, Ning B and Shi T (2019) Single-cell RNA-seq technologies and related computational data analysis. Front Genet 10, 1-13 https://doi.org/10.3389/fgene.2019.00001
  6. Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65, 631-643 e634 https://doi.org/10.1016/j.molcel.2017.01.023
  7. Ramskold D, Luo S, Wang YC et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30, 777-782 https://doi.org/10.1038/nbt.2282
  8. Sasagawa Y, Nikaido I, Hayashi T et al (2013) Quartz-Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals nongenetic gene-expression heterogeneity. Genome Biol 14, 1-17
  9. Qian X, Harris KD, Hauling T et al (2020) Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat Methods 17, 101-106 https://doi.org/10.1038/s41592-019-0631-4
  10. Stahl PL, Salmen F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82 https://doi.org/10.1126/science.aaf2403
  11. Tang X, Huang Y, Lei J, Luo H, Zhu X (2019) The single-cell sequencing: New developments and medical applications. Cell Biosci 9, 1-9 https://doi.org/10.1186/s13578-018-0263-x
  12. Rodriques SG, Stickels RR, Goeva A et al (2019) Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467 https://doi.org/10.1126/science.aaw1219
  13. Kulkarni A, Anderson AG, Merullo DP and Konopka G (2019) Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr Opin Biotechnol 58, 129-136 https://doi.org/10.1016/j.copbio.2019.03.001
  14. Choi YH and Kim JK (2019) Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol Cells 42, 189-199 https://doi.org/10.14348/MOLCELLS.2019.2446
  15. Kester L and Oudenaarden AV (2018) Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23, 166-179 https://doi.org/10.1016/j.stem.2018.04.014
  16. Paik DT, Cho S, Tian L, Chang HY and Wu JC (2020) Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol [Online ahead of print]
  17. Eberwine J, Yeh H, Miyashiro K et al (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89, 3010-3014 https://doi.org/10.1073/pnas.89.7.3010
  18. Schaum N, Karkanias J, Neff NF et al (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367-372 https://doi.org/10.1038/s41586-018-0590-4
  19. Islam S, Kjallquist U, Moliner A et al (2012) Highly multiplexed and strand-specific single-cell RNA 5' end sequencing. Nat Protoc 7, 813-828 https://doi.org/10.1038/nprot.2012.022
  20. Pollen AA, Nowakowski TJ, Shuga J et al (2014) Lowcoverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32, 1053-1058 https://doi.org/10.1038/nbt.2967
  21. Svensson V, Vento-Tormo R and Teichmann SA (2018) Teichmann, exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13, 599-604 https://doi.org/10.1038/nprot.2017.149
  22. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G and Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10, 1096-1100 https://doi.org/10.1038/nmeth.2639
  23. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S and Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9, 171-181 https://doi.org/10.1038/nprot.2014.006
  24. Hashimshony T, Wagner F, Sher N and Yanai I (2012) CEL-Seq: Single-cell RNA-seq by multiplexed linear amplification. Cell Rep 2, 666-673 https://doi.org/10.1016/j.celrep.2012.08.003
  25. Hashimshony T, Senderovich N, Avital G et al (2016) CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17, 1-7 https://doi.org/10.1186/s13059-015-0866-z
  26. Hochgerner H, Lonnerberg P, Hodge R et al (2017) STRTseq-2i: Dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array. Sci Rep 7, 1-8 https://doi.org/10.1038/s41598-016-0028-x
  27. Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 https://doi.org/10.1016/j.cell.2015.04.044
  28. Zhang X, Li T, Liu F et al (2019) Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol Cell 73, 130-142e135 https://doi.org/10.1016/j.molcel.2018.10.020
  29. Goldstein LD, Chen YJ, Dunne J et al (2017) Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics 18, 1-10 https://doi.org/10.1186/s12864-016-3406-7
  30. Zhang X, Li T, Liu F et al (2019) Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol Cell 73, 130-142.e135 https://doi.org/10.1016/j.molcel.2018.10.020
  31. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 https://doi.org/10.1016/j.cell.2015.05.002
  32. Habib N, Avraham-Davidi I, Basu A et al (2017) Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 14, 955-958 https://doi.org/10.1038/nmeth.4407
  33. Zheng GXY, Terry JM, Belgrader P et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 14049 https://doi.org/10.1038/ncomms14049
  34. Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776-779 https://doi.org/10.1126/science.1247651
  35. Keren-Shaul H, Kenigsberg E, Jaitin DA et al (2019) MARSseq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc 14, 1841-1862 https://doi.org/10.1038/s41596-019-0164-4
  36. Rosenberg AB, Roco CM, Muscat RA et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176-182 https://doi.org/10.1126/science.aam8999
  37. Asp M, Bergenstrahle J and Lundeberg J (2020) Spatially resolved transcriptomes - next generation tools for tissue exploration. Bioessays e1900221 [Online ahead of print]
  38. Stickels RR, Murray E, Kumar P et al (2020) Sensitive spatial genome wide expression profiling at cellular resolution. bioRxiv https://doi.org/10.1101/2020.03.12.989806
  39. Li G, Tian L, Goodyer W et al (2019) Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development. Development 146, dev173476 https://doi.org/10.1242/dev.173476
  40. Su T, Stanley G, Sinha R et al (2018) Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356-362 https://doi.org/10.1038/s41586-018-0288-7
  41. Hulin A, Hortells L, Gomez-Stallons MV et al (2019) Maturation of heart valve cell populations during postnatal remodeling. Development 146, dev173047 https://doi.org/10.1242/dev.173047
  42. Soysa TY, Ranade SS, Okawa S et al (2019) Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature 572, 120-124 https://doi.org/10.1038/s41586-019-1414-x
  43. Skelly DA, Squiers GT, McLellan MA et al (2018) Singlecell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22, 600-610 https://doi.org/10.1016/j.celrep.2017.12.072
  44. Schafer S, Viswanathan S, Widjaja AA et al (2017) IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110-115 https://doi.org/10.1038/nature24676
  45. See Kelvin, Tan WLW, Lim EH et al (2017) Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun 8, 225 https://doi.org/10.1038/s41467-017-00319-8
  46. Nomura S, Satoh M, Fujita T et al (2018) Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun 9, 4435 https://doi.org/10.1038/s41467-018-06639-7
  47. Gaspar I, Ephrussi A (2015) Strength in numbers: quantitative single-molecule RNA detection assays. Wiley Interdiscip Rev Dev Biol 4, 135-150 https://doi.org/10.1002/wdev.170
  48. Westoby J, Artemov P, Hemberg M and Ferguson-Smith A (2020) Obstacles to detecting isoforms using full-length scRNA-seq data. Genome Biol 21, 1-19 https://doi.org/10.1186/s13059-019-1906-x