DOI QR코드

DOI QR Code

Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds

  • Kim, Yeong Su (Department of Bio-industrial Machinery Engineering, Kyungpook National University) ;
  • Woo, Duk Gam (Research Faculty of Agriculture, Hokkaido University) ;
  • Kim, Tae Han (Department of Bio-industrial Machinery Engineering, Kyungpook National University)
  • 투고 : 2019.02.27
  • 심사 : 2019.07.01
  • 발행 : 2020.08.31

초록

Spent coffee grounds (SCG), the residue after brewing coffee beverage, is a promising biodiesel feedstock due to its high oil contents (15-20%). However, SCG should be pretreated to reduce the high free fatty acid content, which hampers transesterification reaction. To overcome this, we explored a direct transesterification reaction of SCG using ultrasound irradiation and identified the optimal sonication parameters. A high fatty acid methyl ester (FAME) content, up to 97.2%, could be achieved with ultrasound amplitude of 99.2 ㎛, irradiation time of 10 min, and methanol to oil ratio of 7:1 in the presence of potassium hydroxide concentration of 1.25 wt.%. In addition, we demonstrated that ultrasound irradiation is an efficient method to produce biodiesel from untreated SCG in a short time with less energy than the conventional mechanical stirring method. The physical and chemical properties of the SCG biodiesel met the requirements for an alternative fuel to the current commercial biodiesel.

키워드

참고문헌

  1. Ataya F, Dude MA, Ternan M. Acid-catalyzed transesterification of canola oil to biodiesel under single- and two-phase reaction conditions. Energ. Fuels 2007;21:2450-2459. https://doi.org/10.1021/ef0701440
  2. Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour. Technol. 2010;101:639-645. https://doi.org/10.1016/j.biortech.2009.08.050
  3. International coffee organization. Coffee market report-November 2018. [Internet]. c 2018 [cited 20 December 2018]. Available from: http://www.ico.org/Market-Report-18-19-e.asp.
  4. Murthy PS, Naidu MM. Sustainable management of coffee industry by-products and value addition- A review. Resour. Conserv. Recycl. 2012;66:45-58. https://doi.org/10.1016/j.resconrec.2012.06.005
  5. Martinez-Saez N, Garcia AT, Perez ID, et al. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017;216:114-122. https://doi.org/10.1016/j.foodchem.2016.07.173
  6. Campos-Vega R, Loarca-Pina G, Vergara-Castaneda HA, DaveOomah B. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015;45:24-36. https://doi.org/10.1016/j.tifs.2015.04.012
  7. Tuntiwiwattanapun N, Monono E, Wiesenborn D, Tongcumpou C. In-situ transesterification process for biodiesel production using spent coffee grounds from the instant coffee industry. Ind. Crops Prod. 2017;102:23-31. https://doi.org/10.1016/j.indcrop.2017.03.019
  8. Al-Hamamre Z, Foerster S, Hartmann F, Kroger M, Kaltschmitt M. Oil extracted from spent coffee grounds as a renewable source for fatty acidmethyl ester manufacturing. Fuel 2012;96:70-76. https://doi.org/10.1016/j.fuel.2012.01.023
  9. Canakci M, Gerpen JV. Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 2001;44:1429-1436.
  10. Blinova L, Bartosova A, Sirotiak M. Biodiesel production from spent coffee grounds. Fac. Mater. Sci. Technol. 2017;25:113-121.
  11. Zullaikah S, Lai CC, Vali SR, Ju YH. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour. Technol. 2005;96:1889-1896. https://doi.org/10.1016/j.biortech.2005.01.028
  12. Zhang Y, Dube MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 2003;90:229-240. https://doi.org/10.1016/S0960-8524(03)00150-0
  13. Deng X, Fang Z, Liu Y. Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energ. Convers. Manage. 2010;51:2802-2807. https://doi.org/10.1016/j.enconman.2010.06.017
  14. Ji J, Wang J, Li Y, Yu Y, Xu Z. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 2006;44:411-414. https://doi.org/10.1016/j.ultras.2006.05.020
  15. Stavarache C, Vinatoru M, Maeda Y. Ultrasonic versus silent methylation of vegetable oils. Ultrason. Sonochem. 2006;13:401-407. https://doi.org/10.1016/j.ultsonch.2005.08.001
  16. Georgogianni KG, Kontominas MG, Pomonis PJ, Avlonitis D, Gergis V. Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Proc. Technol. 2008;89:503-509. https://doi.org/10.1016/j.fuproc.2007.10.004
  17. Kumar D, Kumar G, Singh P, Singh CP. Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultrason. Sonochem. 2010;17:555-559. https://doi.org/10.1016/j.ultsonch.2009.10.018
  18. Hingu SM, Gogate PR, Rathod VK. Synthesis of biodiesel from waste cooking oil using sonochemical reactors. Ultrason. Sonochem. 2010;17:827-832. https://doi.org/10.1016/j.ultsonch.2010.02.010
  19. Teixeira LSG, Assis JCR, Mendonc DR, et al. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel. Fuel Proc. Technol. 2009;90:1164-1166. https://doi.org/10.1016/j.fuproc.2009.05.008
  20. Rocha MVP, de Matos LJBL, de Lima LP, et al. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresour. Technol. 2014;167:343-348. https://doi.org/10.1016/j.biortech.2014.06.032
  21. Liu Y, Tu Q, Knothe G, Lu M. Direct transesterification of spent coffee grounds for biodiesel production. Fuel 2017;199:157-161. https://doi.org/10.1016/j.fuel.2017.02.094
  22. Ejikeme PM, Anyaogu ID, Ejikeme CL, et al. Catalysis in biodiesel production by transesterification processes-An insight. J. Chem. 2010;7:1120-1132.
  23. Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl. Energ. 2010;87:1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006
  24. Burton R, Fan X. Evaluation of two-step reaction and enzyme catalysis approaches for biodiesel production from spent coffee grounds. Int. J. Green Energ. 2010;7:530-536. https://doi.org/10.1080/15435075.2010.515444
  25. Al-Hamamre Z, Foerster S, Hartmann F, Kroger M, Kaltschmitt M. Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 2012;96:70-76. https://doi.org/10.1016/j.fuel.2012.01.023
  26. Maghami M, Sadrameli SM, Ghobadian B. Production of biodiesel from fishmeal plant waste oil using ultrasonic and conventional methods. Appl. Therm. Eng. 2015;75:575-579. https://doi.org/10.1016/j.applthermaleng.2014.09.062
  27. Lee SB, Lee JD, Hong IK. Ultrasonic energy effect on vegetable oil based biodiesel synthetic process. J. Ind. Eng. Chem. 2011;17:138-143. https://doi.org/10.1016/j.jiec.2010.12.012
  28. Koh LLA, Chandrapala J, Zisu B, Martin GJO, Kentish SE, Ashokkumar M. A comparison of the effectiveness of sonication, high shear mixing and homogenization on improving the heat stability of whey protein solutions. Food Bioproc. Technol. 2014;7:556-566. https://doi.org/10.1007/s11947-013-1072-1
  29. Cao X, Zhang M, Mujumdar AS, Zhong Q, Wang Z. Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying. Ultrason. Sonochem. 2018;40:333-340. https://doi.org/10.1016/j.ultsonch.2017.06.014
  30. Su Y, Zhang M, Zhang W, Liu C, Adhikari B. Ultrasonic microwave-assisted vacuum frying technique as a novel frying method for potato chips at low frying temperature. Food Bioprod. Proc. 2018;108:95-104. https://doi.org/10.1016/j.fbp.2018.02.001
  31. Kookos IK. Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs). Resour. Conserv. Recycl. 2018;134:156-164. https://doi.org/10.1016/j.resconrec.2018.02.002
  32. Korea Electric Power Corporation. Power rates system [Internet]. c2019 [cited 30 April]. Available from: http://cyber.kepco.co.kr/ckepco/front/jsp/CY/H/C/CYHCHP00104.jsp?menuCd=FN0204030104.
  33. Aristizabal V, Garcia CA, Cardona CA. Integrated production of different types of bioenergy from oil palm through biorefinery concept. Waste Biomass Valor. 2016:7:737-745. https://doi.org/10.1007/s12649-016-9564-7
  34. Budzaki S, Miljic G, Sundaram S, Tisma M, Hessel V. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Appl. Energ. 2018;210:268-278. https://doi.org/10.1016/j.apenergy.2017.11.026
  35. Gerpen JV. Biodiesel processing and production. Fuel Proc. Technol. 2005;86:1097-1107. https://doi.org/10.1016/j.fuproc.2004.11.005
  36. Leung DYC, Guo Y. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Proc. Technol. 2006;87:883-890. https://doi.org/10.1016/j.fuproc.2006.06.003
  37. Eevera T, Rajendran K, Saradha S. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renew. Energ. 2009;34:762-765. https://doi.org/10.1016/j.renene.2008.04.006
  38. Kesgin C, Yucel S, Ozcimen D, Terzioglu P, Attar A. Transesterification of hazelnut oil by ultrasonic irradiation. Int. J. Green Energ. 2016;13:328-333. https://doi.org/10.1080/15435075.2014.952427
  39. Stavarache C, Vinatoru M, Nishimura R, Maeda Y. Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrason. Sonochem. 2005;12:367-372. https://doi.org/10.1016/j.ultsonch.2004.04.001
  40. Santos FFP, Malveira JQ, Cruz MGA, Fernandes FAN. Production of biodiesel by ultrasound assisted esterification of Oreochromis niloticus oil. Fuel 2010;89:275-279. https://doi.org/10.1016/j.fuel.2009.05.030
  41. Yin X, Ma H, You Q, Wang Z, Chang J. Comparison of four different enhancing methods for preparing biodiesel through transesterification of sunflower oil. Appl. Energ. 2012;91:320-325. https://doi.org/10.1016/j.apenergy.2011.09.016
  42. Gupta AR, Yadav SV, Rathod VK. Enhancement in biodiesel production using waste cooking oil and calcium diglyceroxide as a heterogeneous catalyst in presence of ultrasound. Fuel 2015;158:800-806. https://doi.org/10.1016/j.fuel.2015.05.064
  43. Fan X, Chen F, Wang X. Ultrasound-assisted synthesis of biodiesel from crude cottonseed oil using response surface methodology. J. Oleo Sci. 2010;59:235-241. https://doi.org/10.5650/jos.59.235
  44. Singh AK, Fernando SD, Hernandez R. Base-catalyzed fast transesterification of soybean oil using ultrasonication. Energ. Fuel. 2007;21:1161-1164. https://doi.org/10.1021/ef060507g
  45. Thanh LT, Okitsu K, Sadanaga Y, Takenaka N, Maeda Y, Bandow H. A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: A practical and economical approach to produce high quality biodiesel fuel. Bioresour. Technol. 2010;101:5394-5401. https://doi.org/10.1016/j.biortech.2010.02.060
  46. Sivaramakrishnan R, Incharoensakdi A. Microalgae as feedstock for biodiesel production under ultrasound treatment - A review. Bioresour. Technol. 2018;250:877-887. https://doi.org/10.1016/j.biortech.2017.11.095
  47. Stavarache C, Vinatoru M, Nishimura R, Maeda Y. Conversion of vegetable oil to biodiesel using ultrasonic irradiation. Chem. Lett. 2003;32:716-717. https://doi.org/10.1246/cl.2003.716
  48. Singh A, Pal A, Maji S. Biodiesel production from microalgae oil through conventional and ultrasonic methods. Energ. Sour. Part A 2017;39:806-810. https://doi.org/10.1080/15567036.2016.1263260
  49. Jaliliantabar F, Ghobadian B, Carlucci AP, et al. Comparative evaluation of physical and chemical properties, emission and combustion characteristics of brassica, cardoon and coffee based biodiesels as fuel in a compression-ignition engine. Fuel 2018;222:156-174. https://doi.org/10.1016/j.fuel.2018.02.145
  50. Armas O, Yehliu K, Boehman AL. Effect of alternative fuels on exhaust emissions during diesel engine operation with matched combustion phasing. Fuel 2010;89:438-456. https://doi.org/10.1016/j.fuel.2009.09.022
  51. Liaquat AM, Masjuki HH, Kalam MA, et al. Effect of coconut biodiesel blended fuels on engine performance and emission characteristics. Procedia Eng. 2013;56:583-590. https://doi.org/10.1016/j.proeng.2013.03.163
  52. Shameer PM, Ramesh K. Green technology and performance consequences of an eco-friendly substance on a 4-stroke diesel engine at standard injection timing and compression ratio. J. Mech. Sci. Technol. 2017;31:1497-150. https://doi.org/10.1007/s12206-017-0249-3
  53. Xue J, Grift TE, Hansen AC. Effect of biodiesel on engine performances and emissions. Renew. Sust. Energ. Rev. 2011;15:1098-1116. https://doi.org/10.1016/j.rser.2010.11.016
  54. Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O. Biofuels: Environment, technology and food security. Renew. Sust. Energ. Rev. 2009;13:1275-1287. https://doi.org/10.1016/j.rser.2008.08.014
  55. Park JS, Kim BR, Son JS, Lee JW. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel. Bioresour. Technol. 2018;249:494-500. https://doi.org/10.1016/j.biortech.2017.10.048
  56. National raw information center. Disposal costs according to waste type [Internet]. c2019. [cited 10 May]. Available from:http//www.law.go.kr/admRulBylInfoP.do?bylSeq=1792018&admRulSeq=2100000038780&admFlag=0&directYn=Y.
  57. Rural Development Administration (RDA). Manufacturing and utilization of spent coffee grounds compost [Internet]. c2019. [cited 10 May]. Available from: http://www.nongsaro.go.kr/portal/contentsFileView.do?ep=F2H5TAYBh19Z9gi0T0N6PqF1juab8B2M@r/xMBcjs5BtyvGH/qhCuqmdMsUch4d/.
  58. Barbero S, Toso D. Systemic design of a productive chain:Reusing coffee waste as an input to agricultural production. Environ. Qual. Manage. 2010;19:67-77. https://doi.org/10.1002/tqem.20254
  59. Greenhouse Gas Inventory and Research Center. National greenhouse gas inventory report in 2018. [Internet]. c2019. [cited 10 May]. Available from: http://www.gir.go.kr/home/board/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=&searchValue=&menuId=36&boardId=43&boardMasterId=2&boardCategoryId=.
  60. Korea Resources Recirculation Information System. Status of waste generation and disposal in 2016. [Internet]. c2019. [cited 12 May]. Available from: http://www.kwaste.or.kr/images/sub04/0101/16.pdf.
  61. McNutt J, He Q. Spent coffee grounds: A review on current utilization. J. Ind. Eng. Chem. 2019;71:78-88. https://doi.org/10.1016/j.jiec.2018.11.054

피인용 문헌

  1. Solid Fuel Characteristics of Pellets Comprising Spent Coffee Grounds and Wood Powder vol.14, pp.2, 2020, https://doi.org/10.3390/en14020371