DOI QR코드

DOI QR Code

Electrochemical degradation of Orange G in K2SO4 and KCl medium

  • Hamous, Hanene (Physical and chemical Laboratory of materials, catalysis and environment (LPCMCE), University of sciences and technology of Oran Mohamed Boudiaf USTOMB) ;
  • Khenifi, Aicha (Physical and chemical Laboratory of materials, catalysis and environment (LPCMCE), University of sciences and technology of Oran Mohamed Boudiaf USTOMB) ;
  • Bouberka, Zohra (Physical and chemical Laboratory of materials, catalysis and environment (LPCMCE), University of sciences and technology of Oran Mohamed Boudiaf USTOMB) ;
  • Derriche, Zoubir (Physical and chemical Laboratory of materials, catalysis and environment (LPCMCE), University of sciences and technology of Oran Mohamed Boudiaf USTOMB)
  • 투고 : 2019.04.25
  • 심사 : 2019.08.11
  • 발행 : 2020.08.31

초록

In this work, a detailed study on the electrochemical degradation of an azo dye, Orange G is performed using a platinum electrode. Indeed, the influence of the dye concentration (50-150 mg/L), the pH of the medium and the density of the electric current is studied on the rate of discoloration, the rate of mineralization, the efficiency of the electric current and the energy consumption. The UV-visible spectra of OG plotted against the degradation time show the decrease of the intensity of the characteristic dye peaks. In an environment rich in chlorides, all peaks disappear after 15 min of degradation. However, the peaks at wavelengths of 200 and 290 nm appeared after one hour of treatment. In K2SO4, the eliminated percentages are respectively 46, 54 and 61% for wavelengths of 245, 330 and 480 nm. This suggests that the degradation mechanisms in K2SO4 and KCl environments are not the same. In the middle rich in chlorides, the eliminated percentage of OG did not seem to be affected by the concentrations increase. These results confirm the hypothesis that electrochemical oxidation process is very favorable for concentrated pollutants discharge.

키워드

참고문헌

  1. Comninellis C, Chen G. Electrochemistry for the Environment. New York: Springer; 2010.
  2. Rao ANS, Venkatarangaiah VT. Metal oxide-coated anodes in wastewater treatment. Environ. Sci. Pollut. Res. 2014;21:3197-3217. https://doi.org/10.1007/s11356-013-2313-6
  3. Canizares P, Paz R, Saez C, Rodrigo MA. Electrochemical oxidation of polyhydroxybenzenes on boron-doped diamond anodes. J. Environ. Manage. 2009;90:410-420. https://doi.org/10.1016/j.jenvman.2007.10.010
  4. Martinez-Huitle CA, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 2006;35:1324-1340. https://doi.org/10.1039/B517632H
  5. Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014;21:8336-8367. https://doi.org/10.1007/s11356-014-2783-1
  6. Brillas E, Sires I. Electrochemical removal of pharmaceuticals from water streams: Reactivity elucidation by mass spectrometry. Trends Anal. Chem. 2015;70:112-121. https://doi.org/10.1016/j.trac.2015.01.013
  7. Anglada A, Urtiaga A, Ortiz I. Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J. Chem. Technol. Biotechnol. 2009;84:1747-1755. https://doi.org/10.1002/jctb.2214
  8. Martinez-Huitle CA, Andrade LS. Electrocatalysis in wastewater treatment: Recent mechanism advances. Quim. Nova. 2011;34:850-858. https://doi.org/10.1590/S0100-40422011000500021
  9. Martinez-Huitle CA, Rodrigo MA, Sires I, Scialdone OA. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: Critical review. Chem. Rev. 2015;115:13362-13407. https://doi.org/10.1021/acs.chemrev.5b00361
  10. Martinez-Huitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods:A general review. Appl. Catal. B. 2009;87:105-145. https://doi.org/10.1016/j.apcatb.2008.09.017
  11. Panizza M. Importance of electrode material in the electrochemical treatment of wastewater containing organic pollutants. In: Comninellis C, Chen G, eds. Electrochemistry for the Environment. Berlin: Springer science; 2010. p. 25-54.
  12. Liu L, Zhao G, Wu M, Lei Y, Geng R. Electrochemical degradation of chlorobenzene on boron-doped diamond and platinum electrodes. J. Hazard. Mater. 2009;168:179-186. https://doi.org/10.1016/j.jhazmat.2009.02.004
  13. Tabarra MA, Mallah HA, El Jamal MM. Anodic oxidation of anionic Xanthene dyes at Pt and Bdd electrodes. J. Chem. Technol. Metal. 2014;49:247-253.
  14. Chatzisymeon E, Xekoukoulotakis NP, Coz A, Kalogerakis N, Mantzavino DJ. Electrochemical treatment of textile dyes and dyehouse effluents. Hazard. Mater. 2006;137:998-1007. https://doi.org/10.1016/j.jhazmat.2006.03.032
  15. Xu XR, Li XZ. Degradation of azo dye orange G in aqueous solutions by persulfate with ferrous ion. Sep. Purif. Technol. 2010;72:105-111. https://doi.org/10.1016/j.seppur.2010.01.012
  16. Madhaven J, Grieser F, Ashokkumar M. Degradation of orange-G by advanced oxidation. Ultrason. Sonochem. 2010;17:338-343. https://doi.org/10.1016/j.ultsonch.2009.10.008
  17. Chenini H, Djebbar K, Zendaoui SM, Sehili T, Zouchoune B. Removal of an Azo Dye (Orange G) by various Methods in homogenious phase. Comparative study. Jordan J. Chem. 2011;6:307-319.
  18. Khenifi A, Bouberka Z, Hamani H, Illikti H, Kameche M, Derriche Z. Decoloration of orange G (OG) using electrochemical reduction. Environ. Technol. 2012;33:1081-1088. https://doi.org/10.1080/09593330.2011.609912
  19. Yoshida Y, Ogata S, Nakamatsu S, et al. Decoloration of azo dye using atomic hydrogen permeating through a Pt-modified palladized Pd sheet electrode. Electrochim. Acta. 1999;45:409-414. https://doi.org/10.1016/S0013-4686(99)00277-7
  20. Fernandes A, Morao A, Magrinho M, Lopes A, Goncalves I. Electrochemical degradation of C.I. Acid Orange 7. Dyes Pigm. 2004;61:287-296. https://doi.org/10.1016/j.dyepig.2003.11.008
  21. Wu M, Zhao G, Li M, Liu L, Li D. Graphene oxide wrapped melamine sponge as an efficient and recoverable adsorbent for Pb(II) removal from fly ash leachate. J. Hazard. Mater. 2009;163:26-34. https://doi.org/10.1016/j.jhazmat.2008.06.050
  22. Panizza M, Michaud PA, Cerisola G, Comninellis Ch. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem. 2001;507:206-214. https://doi.org/10.1016/S0022-0728(01)00398-9
  23. Chen X, Chen G. Anodic oxidation of Orange II on Ti/BDD electrode: Variable effects. Sep. Purif. Technol. 2006;48:45-49. https://doi.org/10.1016/j.seppur.2005.07.024
  24. Zhou M, Sarkka H, Sillanpaa M. A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Sep. Purif. Technol. 2011;78:290-297. https://doi.org/10.1016/j.seppur.2011.02.013
  25. Panizza M, Zolezzi M, Nicolella C. Biological and electrochemical oxidation of Naphtalenesulfonates. J. Chem. Technol. Biotechnol. 2006;81:225-232. https://doi.org/10.1002/jctb.1396
  26. Faouzi M, CaNizares P, Gadri A, et al. Advanced oxidation processes for the treatment of wastes polluted with azoic dyes. Electrochim. Acta. 2006;52:325-331 https://doi.org/10.1016/j.electacta.2006.05.011
  27. Molina J, Fernandez J, del Rio AI, Bonastre J, Cases F. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes. Appl. Surf. Sci. 2011;258:6246-6256. https://doi.org/10.1016/j.apsusc.2012.02.150
  28. Sales Solano AM, Rocha JHB, Fernandes NS, Da Silva DR, Martinez- Huitle CA. Direct and indirect electrochemical oxidation process for decolourisation treatment of synthetic wastewaters containing dye. Oxid. Commun. 2011;34:218-229.
  29. Pepio M, Gutierrez-Bouzan MC. Empirical models for the decoloration of dyes in an electrochemical batch cell. Ind. Eng. Chem. Res. 2011;50:8965-8972. https://doi.org/10.1021/ie102549f
  30. Ma XJ, Zhou MH. A comparative study of azo dye decolorization by electro-Fenton in two common electrolytes. J. Chem. Technol. Biotechnol. 2009;84:1544-1549. https://doi.org/10.1002/jctb.2218
  31. Rodriguez FA, Mateo MN, Dominguez R, Riveri EP, Gonzalez I. Electrochemical treatment of indigo carmine solutions via active chlorine in a FM01-LC reactor using DSA $(Ti/IrO_2/SnO_2/Sb_2O_5)$ Electrodes. ECS Trans. 2011;36:529-538.
  32. Gomes L, Miwa DW, Malpass GRP, Motheo AJ. Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell. Braz. J. Chem. Soc. 2011;22:1299-1306. https://doi.org/10.1590/S0103-50532011000700015
  33. Rajkumar K, Muthukumar M. Optimization of electro-oxidation process for the treatment of Reactive Orange 107 using response surface methodology. Environ. Sci. Pollut. Res. 2012;19:148-160. https://doi.org/10.1007/s11356-011-0532-2
  34. Rajkumar D, Kim JG. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J. Hazard. Mater. 2006;136:203-212. https://doi.org/10.1016/j.jhazmat.2005.11.096

피인용 문헌

  1. Structure-Based Long-Term Biodegradation of the Azo Dye: Insights from the Bacterial Community Succession and Efficiency Comparison vol.13, pp.21, 2020, https://doi.org/10.3390/w13213017