DOI QR코드

DOI QR Code

Time-Lapse Electrical Resistivity Structures for the Active Layer of Permafrost Terrain at the King Sejong Station: Correlation Interpretation with Vegetation and Meteorological Data

세종과학기지 주변 영구동토의 활동층에 대한 시간경과 전기비저항자료의 해석: 기상 및 식생 자료와의 연계해석

  • Received : 2020.07.22
  • Accepted : 2020.08.21
  • Published : 2020.08.28

Abstract

Over the wide area, King Sejong Station and the nearby land are uncovered with snow and ice conditions. Therefore, the active layer on the permafrost has been formed to be much thicker than the other Antarctica region. Electrical resistivity survey of Wenner and dipole-dipole arrays was undertaken at a series of time in the freezing season at the King Sejong Station to delineate subsurface structure and to monitor active layer in permafrost terrain. Time-lapse resistivity structures are well in terms of the vegetation distribution, ground surface temperature, and snow depth. Horizontal high resistivity belt(>1826 Ωm) at very shallow depth is thickening with the lapse of time, probably caused by the freezing of the water in the pore spaces with decrease of ground temperature. Subsurface structures for the area of low snow-cover and vegetated zone area are comprised of 0~0.5 m deep high-resistive gravel-rich soil, 0.5~3 m deep low-resistive active layer, and the underlying permafrost. In contrast, the unvegetated area and high snow-buildup is characterized with high resistivities larger than approximately 2000 Ωm due to freezing of the soil throughout the year. Data interpretation and correlation schemes explored in this paper can be applied to confirm the active layer, which is expected to get thinner in additional survey during the thawing season.

남극 세종과학기지 주변은 넓은 지역에 눈과 얼음이 덮여있지 않은 육지가 드러나 다른 남극 지역에 비해 활동층이 비교적 두꺼우며 그 아래 동토층이 존재한다. 전기비저항탐사의 배열법 중 웨너 배열법과 쌍극자 배열법을 이용하여 세종과학기지 주변 동토 지역에 결빙기 기간 동안 시간 변화에 따른 활동층의 변화를 조사하였다. 시간 변화에 따른 전기비저항 결과는 식생 분포, 지상 온도 및 적설량의 상태에 따라 잘 일치하였다. 극 천부인 수평적인 고비저항대(>1826 Ωm)에서는 시간에 따른 두께 변화를 보여주었는데, 이는 지중 온도의 감소로 공극내 존재하던 공극수가 얼어 상대적으로 전기비저항 값이 높아지는 것으로 보인다. 적설이 발생하지 않는 식생활동이 활발한 구간은 깊이 0.5 m까지 토양 속에 혼재된 많은 자갈로 인해 비저항이 높았고 깊이 0.5~3 m 에서는 그 아래 동토층이 존재한다. 반대로, 적설량이 많은 식생이 존재하지 않는 구간에서는 전기비저항값이 약 2000 Ωm 이상의 고비저항대가 나타나는데 이곳은 연중 얼어있는 것으로 해석된다. 결빙기에 두꺼워지는 활동층은 차후 해빙기에 추가 탐사를 할 경우 이와 반대로 점차 얇아지는 두께로 보다 명확히 검증될 수 있을 것으로 보인다.

Keywords

References

  1. Ahn, T.G., Ko, C.H., Jeong, Y.J., Lee, H,S., Song, S.H. and Yong, H.H. (2015) An electrical resistivity monitoring in embankment, Journal of the Korean Earth Science Society, v.36, no.1, p.59-67. https://doi.org/10.5467/JKESS.2015.36.1.59
  2. Archie, G.E. (1942) The electrical resistivity log as an aid to determining some reservior characteristics, Transactions of the American Institute of Mining, Metallurgical and Petroluem Engineers, v.146, p.389-409.
  3. Briggs, M.A., Campbell, S., Nolan, J., Walvoord, M.A., Ntarlagiannis, D., Day-Lewis, F.D. and Lane, J.W. (2017) Surface geophysical methods for characteristic frozen ground in transitional permafrost landscapes, Permafrost and Periglacial Process, v.28, no.1, p.52-65. https://doi.org/10.1002/ppp.1893
  4. Dafflon, B., Hubbard, S, Ulrich, C., Peterson, J., Wu, Y, Wainwright, H. and Kneafsey, T.J. (2016) Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region, Geophysics, v.81, no.1, p.247-263.
  5. Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A.P., Romanocsky, V. and Hubbard, S. (2017) Coincident aboveground and belowground autonomous monitoring to quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra, Journal of Geophysical Research: Biogeosciences, v.122, p.1321-1342. https://doi.org/10.1002/2016JG003724
  6. Diprowin. (2000) Electrical resistivity processing program, Heesong Ltd, Korea.
  7. Du, E., Zhao, L., Wu, T., Li, R., Yue, G., Wu, X., Li, W., Jiao, Y., Hu, G., Qiao, Y., Wang, Z., Zou, D. and Liu, G. (2016) The relationship between the ground surface layer permittivity and active-layer thawing depth in a Qinghai-Tibetan Plateau permafrost area, Cold Regions Science and Technology, v.126, p.55-60. https://doi.org/10.1016/j.coldregions.2016.03.006
  8. Elchin, J. and Kevin, S. (2016) The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics, The Cryosphere, v.10, p.465-475. https://doi.org/10.5194/tc-10-465-2016
  9. Fawcett, D., Panigada, C., Tagliabue, G., Boschetti, M., Celesti, M., Evdokimov, A., Biriukova, K., Colombo, R., Miglietta, F., Rascher, U. and Anderson, K. (2020) Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sensing, v.12, p.514. https://doi.org/10.3390/rs12030514
  10. Han, U. and Jung, H.C. (1994) Temperature response in the permafrost at the Sejong Station, Antarctica, Journal of the Korean Earth Science Society, v.15, p.170-176.
  11. Harris, C., Arenson, L.U., Christiansen, H.H., Etzelmuller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Holzle. M., Humlum, O., Isaksen, K., Kaab, A., Kern-Lutschg, M.A., Lehning, M., Matsuoka, N., Murton, J.B., Notzli, J., Phillips, M., Ross, N., Seppala, M., Springman, S.M. and Muhll, D.V. (2009) Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Science Reviews, v.92, p.117-171. https://doi.org/10.1016/j.earscirev.2008.12.002
  12. Harrison, W.D. (1991) Permafrost response to surface temperature change and its implications for 40,000 year surface temperature history at Prudhoe Bay, Alaska, Journal of Geophysical Research, v.96, p.683-695. https://doi.org/10.1029/90JB02004
  13. Hughes, K. A., Ireland, L. C., Convey, P. and Fleming, A. H. (2016). Assessing the effectiveness of specially protected areas for conservation of Antarctica's botanical diversity. Conservation Biology, v.30, p.113-120. https://doi.org/10.1111/cobi.12592
  14. Hubbard, S.S., Gangodagamage, C., Dafflon, B., Wainwright. H., Petersen. J., Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J., Tweedie, C. and Wullschleger, S. D. (2012) Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets, Hydrogeology of Cold Regions, v.21, p.149-169.
  15. Jeon, W.H., Lee, J.Y., Lim, H.S. and Yoon, H.I. (2016) Comparison of thermal characteristics of soil in austral summer and winter at King Sejong Station, King George Island, Antarctica, Journal of the Geological Society of Korea, v.52, no.6, p.901-915. https://doi.org/10.14770/jgsk.2016.52.6.901
  16. Jeong, W.W. and Kim, M.H. (2019) Determination of leak zone of reservoir embankment by electrical resistivity survey and drilling survey, Journal of the Korean Society for Environmental Technology, v.20, no.3, p.204-212. https://doi.org/10.26511/JKSET.20.3.9
  17. Ji, Y.S. and Oh, S.H. (2015) Integrated analysis of electrical resistivity monitoring and geotechnical data for soft ground, Journal of Korean Earth Science Society, v.36, p.16-26. https://doi.org/10.5467/JKESS.2015.36.1.16
  18. Jin, M.S., Lee, M.S., Kang, P.C. and Jwa, Y.J. (1991) Petrology and geochemistry of the volcano plutonic rocks in Barton and Weaver Peninsula, King George Island, Antarctica, Korean Journal of Polar Research, v.2, no.1, p.107-134.
  19. Kneisel, C. (2004) New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2D resistivity imaging, Permafrost and Periglacial Processes, v.15, p.221-227. https://doi.org/10.1002/ppp.495
  20. Kim, H.S. and Lee, K.H. (1993) Interactive interpretation methods for one-dimensional Schlumberger electrical sounding and magnetotelluric data, Journal of Geology Society Korea, v.29, no.5, p.493-506.
  21. Kim, H.S., Lee, K.H. and Hahn, J.S. (1995) Electrical surveys for mapping leachate in Nanji-Do landfill site, The Journal of Engineering Geology, v.5, no.3, p.259-276.
  22. Kim, H.S., Nam, S.H. and Kim, Y.D. (1996) Near-surface geophysical surveys using seismic and electric methods in Barton Peninsula of King George Island, Antarctica, Journal of the Geological Society of Korea, v.32, no.2, p.131-145.
  23. Kim, J.H., Yi, M.J., Song, Y.H. and Chung, S.H. (2001) A comparison of electrode arrays in two-dimensional resistivity survey, Journal of Korean Institute of Mineral and Energy Resources Engineers,, v.38, no.2, p.116-128.
  24. Kim, J.S., Song, Y.S., Yoon, W.J., Cho, I.K., Kim, H.S. and Nam, M.J. (2014) Application of New Geophysical Techniques(2nd edition): Principle of new technologies and case studies, Sigma Press, 729p.
  25. Kim, Y.D. and Lee, H.W. (1991) A gravity model of geological structure in Barton Peninsula, King George Island, Korean Journal of Polar Research, v.2, no.2, p.87-100.
  26. Kwon, B.D. and Jwa, Y.J. (1991) Magnetic investigation of the Barton Peninsula, King George Island, The research on natural environments and resources of Antarctica, Korea Ocean Research and Development Institute, BSPG00140-400-7, p.67-90.
  27. Lim, S.K. (2018) Analysis of a weak zone in embankment close to a drainage using resistivity monitoring data, Geophysics and Geophysical Exploration, v.21, no.1, p.8-14. https://doi.org/10.7582/GGE.2018.21.1.008
  28. Osterkamp, T. E. and Burn. C. R. (2003) Permafrost Encyclopedia of Atmospheric Sciences 1st edn, ed J R Holton, J Pyle and J A Curry (Oxford: Academic), p.1717-1729.
  29. Park, S.J., Choi, T.J., Lee, B.Y. and Kim S.J. (2019) 30-Year Climatology Observed at King Sejong Station, Antarctica, XIII International Symposium on Antarctic Earth Sciences, A281.
  30. Rouse Jr, J. W., Haas, R. H., Schell, J.A. and Deering, D. W. (1974) Monitoring Vegetation System in the Great Plains with ERTS, Presented at Third Earth Resources Technology Satellite-1 Symposium, NASA, Washington, D.C, p.309-317
  31. Schnur, M.T., Xie, H. and Wang, X. (2010) Estimating root zone soil moisture at distant using MODIS NDVI and EVI in a semi-arid region of southwestern USA, Ecological Informatics, v.5, p.400-409. https://doi.org/10.1016/j.ecoinf.2010.05.001
  32. Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1990) Applied Geophysics (2ed edition), Cambridge University Press, Cambridge, UK. 792p.
  33. Tominaga, Y., Mochida, A., Okaze, T., Sato, T., Nemoto, M., Motoyoshi, H., Nakai, S., Tsutsumi, T., Otsuki, M., Uamatsu, T. and Yoshino, H. (2011) Development of a system for predicting snow distribution in builtup environments: Combining a mesoscale meteorological model and a CFD model, Journal of Wind Engineering and Industrial Aerodynamics, v.99, no.4, p.460-468. https://doi.org/10.1016/j.jweia.2010.12.004
  34. Turner, D., Lucieer, A., Malenovsky, Z., King, D. H. and Robinson, S. A. (2014) Spatial co-registration of ultrahigh resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sensing, v.6, p.4003-4024. https://doi.org/10.3390/rs6054003
  35. Westermann, S., Wollschlager, U. and Boike, J. (2010) Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel groundpenetrating radar, The Cryosphere, v.4, p.475-487. https://doi.org/10.5194/tc-4-475-2010