DOI QR코드

DOI QR Code

The design of capacitor-based self-powered artificial neural networks devices

커패시터 기반 자가발전 인공 신경망 디바이스 설계

  • Kim, Yongjoo (Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Taeho
  • 김용주 (한국전자통신연구원 인공지능연구소) ;
  • 김태호 (한국전자통신연구원 인공지능연구소)
  • Received : 2020.05.13
  • Accepted : 2020.06.29
  • Published : 2020.08.31

Abstract

This paper proposes the battery-less ultra-low-power self-powered cooperating artificial neural networks device for embedded and IoT systems. This device can work without extraneous power supplying and can cooperate with other neuromorphic devices to build large-scale neural networks. This device has energy harvesting modules, so that can build a self-powered system and be used everywhere without space constraints for power supplying.

본 논문은 초소형 디바이스 분야에서 사용될 수 있는 배터리가 없는 초저전력 자가발전 협업 신경망 시스템을 제공하는 디바이스에 대하여 설명한다. 본 디바이스는 외부에서 전력을 공급하지 않더라도 동작하며, 다른 신경망과 협업하여 대규모의 신경망 구축이 가능하다. 해당 디바이스는 에너지 하베스팅 모듈을 탑재하고 있어 공간적 제약 없이 어느 곳에서나 자가발전을 이용하여 사용이 가능하며, 디바이스 내부의 신경만을 가지고도 동작할 수 있지만 상황에 따라 네트워크를 통해 대규모의 신경망의 일부로 사용하는 것도 가능하다.

Keywords

References

  1. M. Davies et al., "Loihi: A Neuromorphic Manycore Processor with On-chip Learning", IEEE Micro, Jan 2018. DOI: 10.1109/MM.2018.112130359
  2. P.A. Merolla et al., A million spiking-neuron integrated circuit with a scalable communication network and interface, Science, vol. 6197, Aug 2014. DOI: 10.1126/science.1254642
  3. Furber, SB, Galluppi, F, Temple, S & Plana, LA 2014, 'The SpiNNaker project', Institute of Electrical and Electronics Engineers. Proceedings, vol. 102, no. 5, 6750072, pp. 652-665. https://doi.org/10.1109/JPROC.2014.2304638
  4. Johannes Schemmel, Daniel Brüderle, Andreas Grubl, et al. "A Wafer-Scale Neuromorphic Hardware System for Large-Scale Neural Modeling". In: Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS). 2010, pp. 1947-1950 DOI: 10.1109/ISCAS.2010.5536970
  5. Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G, Taba B, Beakes M, Brezzo B, Kuang JB, Manohar R, Risk W, Jackson B, and Modha D. "TrueNorth: Design and Tool Flow of a 65mW 1 Million Neuron Programmable Neurosynaptic Chip". Transactions on Computer Aided Design (TCAD), Volume: 34 Issue: 10, 2015 DOI: 10.1109/TCAD.2015.2474396
  6. Selahattin Kosunalp, "MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey", ETRI Journal Volume 37, Issue 4 DOI: https://doi.org/10.4218/etrij.15.0115.0017
  7. "MN101L ReRAM Embedded MCUs - Panasonic | Mouser". www.mouser.com. Retrieved 2016-06-08.
  8. Simpson, R.E.; P. Fons; A. V. Kolobov; T. Fukaya; et al. (July 2011). "Interfacial phase-change memory". Nature Nanotechnology. 6(8): 501-505. https://doi.org/10.1038/nnano.2011.96.
  9. Akerman, J. (2005). "APPLIED PHYSICS: Toward a Universal Memory". Science. 308 (5721): 508-510. https://doi.org/10.1126/science.1110549
  10. Dudley A. Buck, "Ferroelectrics for Digital Information Storage and Switching." Report R-212, MIT, June 1952.
  11. Kiwan Maeng, Brandon Lucia, "Adaptive dynamic checkpointing for safe efficient intermittent computing", OSDI'18: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation October 2018 Pages 129-144
  12. Jee-Young Lee, "Deep Learning Research Trend Analysis using Text Mining" IJACT Vol.7 No.4 doi:http://doi.org/10.1016/j.iedeen.2017.06.002
  13. Ju-eun Kim., "An Analysis of the effect of Artificial Intelligence on Human Society" JCCT Vol.5 No.2