DOI QR코드

DOI QR Code

Synthesis of TiN-Coated cBN Powder by Sol-Gel Method Using Titanium (IV) Isopropoxide

티타늄 이소프로폭사이드를 이용한 졸-겔법에 의한 TiN 코팅 cBN 분말 합성

  • Lee, Youn Seong (Optic & Electronic Component Materials Center, Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sun Woog (Optic & Electronic Component Materials Center, Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young Jin (Optic & Electronic Component Materials Center, Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Ji Sun (Optic & Electronic Component Materials Center, Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dongwook (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Sae-Hoon (Department of Ceramic Engineering, Gangneung Wonju National University) ;
  • Kim, Jin Ho (Optic & Electronic Component Materials Center, Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology)
  • 이윤성 (한국세라믹기술원 전자융합본부 광전자부품소재팀) ;
  • 김선욱 (한국세라믹기술원 전자융합본부 광전자부품소재팀) ;
  • 이영진 (한국세라믹기술원 전자융합본부 광전자부품소재팀) ;
  • 이지선 (한국세라믹기술원 전자융합본부 광전자부품소재팀) ;
  • 신동욱 (한양대학교 대학원 신소재공학부) ;
  • 김세훈 (강릉원주대학교 세라믹신소재공학과) ;
  • 김진호 (한국세라믹기술원 전자융합본부 광전자부품소재팀)
  • Received : 2020.06.12
  • Accepted : 2020.07.13
  • Published : 2020.09.01

Abstract

In this study, TiN-coated cBN (cubic-structure boron nitride) powders were successfully synthesized by a sol-gel method using titanium (IV) isopropoxide (TTIP) and by controlling the heat treatment conditions. After the sol-gel process, amorphous nano-sized TiOx was uniformly coated on the surface of cBN powder particles. The obtained TiOx-coated cBN powders were heated at 1,000~1,300℃ for 1 or 6 h in a flow of 95%N2-5%H2 mixed gas. With increasing temperature, the chemical composition of the TiOx coating layer changed in the order of TiO2→Ti6O11→Ti4O7→TiN due to reduction of the Ti ions. The TiN coating layer was observable in the samples heated at 1,200℃ and appeared as the main phase in the sample heated at 1,300℃. The resulting thickness of the TiN coating layer of the sample heated at 1,300℃ was approximately 45~50 nm.

Keywords

References

  1. G. Zhao, Z. Li, M. Hu, L. Li, N. He, and M. Jamil, Diamond Relat. Mater., 100, 107589 (2019). [DOI: https://doi.org/10.1016/j.diamond.2019.107589]
  2. H. Zhang, J. Zhang, and S. Wang, Int. J. Refract. Met. Hard Mater., 78, 178 (2019). [DOI: https://doi.org/10.1016/j.ijrmhm.2018.09.012]
  3. M. Hashimoto, K. Kanda, and T. Tsubokawa, Precis. Eng., 51, 186 (2018). [DOI: https://doi.org/10.1016/j.precisioneng. 2017.08.009]
  4. J. G. Zhang, X. C. Wang, B. Shen, and F. H. Sun, Int. J. Refract. Met. Hard Mater., 41, 285 (2013). [DOI: https://doi.org/10.1016/j.ijrmhm.2013.04.017]
  5. E. Korkmaz, R. Onler, and O. B. Ozdoganlar, Procedia Manuf., 10, 683 (2017). [DOI: https://doi.org/10.1016/j.promfg.2017.07.017]
  6. I. D. Marinescu, W. B. Rowe, B. Dimitrov, and I. Inasaki, Tribology of Abrasive Machining Process (ELSEVIER, Netherlands, 2004) p. 369. [DOI: https://doi.org/10.1016/B978-081551490-9.50012-8]
  7. L. Vel, G. Demazeau, and J. Etourneau, Mater. Sci. Eng. B, 10, 149 (1991). [DOI: https://doi.org/10.1016/0921-5107(91)90121-B]
  8. T. Taniguchi, M. Akaishi, and S. Yamaoka, J. Am. Ceram. Soc., 79, 547 (1996). [DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08165.x]
  9. M. Liao, B. Shen, and Z. Wang, Ultra-Wide Bandgap Semiconductor Materials ( ELSEVIER, Netherlands, 2019) p. 111. [DOI: https://doi.org/10.1016/B978-0-12-815468-7.00002-0]
  10. K.H.J. Buschow, R. W. Cahn, and M. C. Flemings, Encyclopedia of Materials: Science and Technology (ELSEVIER, New York, 2001), p. 1.
  11. R. Lv, J. Liu, Y. Li, S. Li, Z. Kou, and D. He, Diamond Relat. Mater., 17, 2062 (2008). [DOI: https://doi.org/10.1016/j.diamond.2008.07.002]
  12. A. McKie, J. Winzer, I. Sigalas, M. Herrmann, L. Weiler, J. Rodel, and N. Can, Ceram. Int., 37, 1 ( 2011). [DOI: h ttps://doi.org/10.1016/j.ceramint.2010.07.034]
  13. S. Enomoto, M. Kato, and S. Miyazawa, J. Mech. Work. Technol., 17, 177 (1988). [DOI: https://doi.org/10.1016/0378-3804(88)90019-8]
  14. J. Laimer, M. Fink, C. Mitterer, and H. Stori, Vaccum, 80, 141 (2005). [DOI: https://doi.org/10.1016/j.vacuum.2005.08.018]
  15. J. Piekoszewski, A. Krajewski, F. Prokert, J. Senkara, J. Stanislawski, L. Walis, Z. Werner, and W. Wlosinski, Vaccum, 70, 307 (2003). [DOI: https://doi.org/10.1016/S0042-207X(02)00660-7]
  16. W. M. Daoush, H. S. Park, and S. H. Hong, Trans. Nonferrous Met. Soc. China, 24, 3562 (2014). [DOI: https://doi.org/10.1016/S1003-6326(14)63502-0]
  17. J. Li, L. Gao, J. Sun, Q. Zhang, J. Guo, and D. Yan, J. Am. Ceram. Soc., 84, 3045 (2001). [DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01136.x]
  18. D. K. Lee, J. H. L ee, and C. S. Oh, J. Ind. Sci. and Tech. Institute., 12, 2 (1998).
  19. M. A. Umer, H. S. Park, D. J. Lee, H. J. Ryu, and S. H. Hong, J. Alloys Compd., 509, 9764 (2011). [DOI: https://doi.org/10.1016/j.jallcom.2011.07.070]
  20. S. Mahshid, M. Askari, and M. S. Ghamsari, J. Mater. Process. Technol., 189, 296 (2007). [DOI: https://doi.org/10.1016/j.jmatprotec.2007.01.040]
  21. A. Monshi. M. R. Foroughi, and M. R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012). [DOI: https://doi.org/10.4236/wjnse.2012.23020]