DOI QR코드

DOI QR Code

Cross-Linked PGMA-co-PMMA/DAAB Membranes for Propylene/Nitrogen Separation

프로필렌/질소 분리를 위한 가교 구조의 PGMA-co-PMMA/DAAB 분리막

  • Kim, Na Un (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Byeong Ju (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김나운 (연세대학교 화공생명공학과) ;
  • 박병주 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2020.07.27
  • Accepted : 2020.08.04
  • Published : 2020.08.31

Abstract

Olefins are industrially important materials used for the synthesis of various petrochemicals. During the polymerization process, unreacted olefin monomers are discharged together with a large amount of nitrogen. For economic benefits, these olefin gases should be efficiently separated from nitrogen. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) comb-like copolymer was synthesized and 4,4'-diaminoazobenzene (DAAB) was introduced to the copolymer to prepare a cross-linked membrane for C3H6/N2 separation. PGM and DAAB were readily reacted at room temperature through an epoxide-amine reaction without additional thermal treatment. PGM-based membrane, which is a glassy polymer, showed a faster permeation of N2 compared to C3H6. The pristine PGM membrane exhibited the N2 permeability of 0.12 barrer and the high N2/C3H6 selectivity of 32.4. As DAAB was introduced as a cross-linker, the thermal stability of the membrane was significantly improved, which was confirmed by TGA result. The N2/C3H6 selectivity was decreased at 1 wt% of DAAB content, but the N2 permeability increased by approximately 4.7 times. We analyzed N2/C3H6 gas separation properties through a glassy polymer-based membrane, which has not been widely studied. Also, we proposed that thermal stability of the membrane can be greatly improved by the cross-linking method.

올레핀 가스는 다양한 석유화학물질의 합성에 사용되는 산업적으로 매우 중요한 물질로, 합성 과정에서 미반응된 올레핀은 다량의 질소와 함께 배출된다. 이러한 화학 공정의 경제성을 향상시키기 위해서는 미반응한 올레핀을 질소로부터 효율적으로 회수해야 한다. 본 연구에서는 올레핀 중 프로필렌을 질소로부터 효과적으로 분리하기 위해 PGMA-co-PMMA (PGM) 가지형 공중합체를 합성하고, 4,4'-diaminoazobenzene (DAAB)를 도입하여 가교된 멤브레인을 제조하였다. PGM과 DAAB는 상온에서 에폭사이드-아민 반응을 통해 쉽게 반응하여 별도의 열처리 없이도 가교 구조의 멤브레인을 형성하였다. 유리상 고분자인 PGM 기반의 멤브레인은 C3H6에 비해 N2를 더 빠르게 투과시키는 결과를 나타내었는데, 순수 PGM 멤브레인의 경우, 0.12 barrer의 N2 투과도와, 32.4의 높은 N2/C3H6 선택도를 보고하였다. DAAB가 가교제로 도입됨에 따라 멤브레인의 열적 안정성이 크게 향상된 것을 TGA 결과로부터 확인하였다. 1 wt%의 DAAB 함량에서 N2/C3H6 선택도는 감소하였으나, N2 투과도가 약 4.7배 증가하는 결과를 나타내었다. 본 연구에서는 많이 연구되지 않은 유리상 고분자 기반의 멤브레인에서의 N2/C3H6 기체 분리 특성을 분석하였으며, 가교를 통해 멤브레인의 열적 안정성을 크게 향상시킬 수 있음을 확인하였다.

Keywords

References

  1. M. Kim and S. W. Kang, "Fabrication of poly(ethylene oxide)/Ag nanoparticles p-benzoquinone composite membrane using $AgNO_3$ precursor for olefin/paraffin separation", Membr. J., 28, 260 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.260
  2. K. Eum, C. Ma, A. Rownaghi, C. W. Jones, and S. Nair, "ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: Efficient propylene separation at elevated pressures", ACS Appl. Mater. Interfaces, 8, 25337 (2016). https://doi.org/10.1021/acsami.6b08801
  3. I. G. Giannakopoulos and V. Nikolakis, "Recovery of hydrocarbons from mixtures containing $C_3H_6$, $C_3H_8$ and $N_2$ using NaX membranes", J. Membr. Sci., 305, 332 (2007). https://doi.org/10.1016/j.memsci.2007.08.023
  4. J. W. Oh, K. Y. Cho, M.-Y. Kan, H. J. Yu, D.-Y. Kang, and J. S. Lee, "High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for $C_3H_6/C_3H_8$ separation", J. Membr. Sci., 596, 117735 (2020). https://doi.org/10.1016/j.memsci.2019.117735
  5. J. Kim and M. R. Othman, "Research trend on ZIF-8 membranes for propylene separation", Membr. J., 29, 67 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.2.67
  6. C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Propylene/nitrogen separation membranes based on amphiphilic copolymer grafted from poly(1-trimethylsilyl-1-propyne)", Membr. J., 29, 88 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.2.88
  7. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation Won Seok", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  8. M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez, and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for $CO_2$ separation: A review", Sep. Purif. Technol., 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
  9. T. C. Merkel, V. Bondar, K. Nagai, and B. D. Freeman, "Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne)", J. Polym. Sci., Part B: Polym. Phys., 38, 273 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
  10. Y. Shi, C. M. Burns, and X. Feng, "Poly(dimethyl siloxane) thin film composite membranes for propylene separation from nitrogen", J. Membr. Sci., 282, 115 (2006). https://doi.org/10.1016/j.memsci.2006.05.011
  11. L. Liu, A. Chakma, and X. Feng, "Propylene separation from nitrogen by poly(ether block amide) composite membranes", J. Membr. Sci., 279, 645 (2006). https://doi.org/10.1016/j.memsci.2005.12.058
  12. S.-J. Kim, P. S. Lee, J.-S. Chang, S.-E. Nam, and Y.-I. Park, "Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in $C_3H_6/C_3H_8$ separation", Sep. Purif. Technol., 194, 443 (2018). https://doi.org/10.1016/j.seppur.2017.11.069
  13. J. H. Shin, H. J. Yu, J. Park, A. S. Lee, S. S. Hwang, S.-J. Kim, S. Park, K. Y. Cho, W. Won, and J. S. Lee, "Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for $C_3H_6/C_3H_8$ separation", J. Membr. Sci., 598, 117660 (2020). https://doi.org/10.1016/j.memsci.2019.117660
  14. M. Sakai, Y. Sasaki, T. Tomono, M. Seshimo, and M. Matsukata, "Olefin selective Ag-exchanged X-type zeolite membrane for propylene/propane and ethylene/ethane separation", ACS Appl. Mater. Interfaces, 11, 4145 (2019). https://doi.org/10.1021/acsami.8b20151
  15. L. Yu, M. Grahn, P. Ye, and J. Hedlund, "Ultra-thin MFI membranes for olefin/nitrogen separation", J. Membr. Sci., 524, 428 (2017). https://doi.org/10.1016/j.memsci.2016.11.077
  16. H. T. Kwon and H.-K. Jeong, "In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation", J. Am. Chem. Soc., 135, 10763 (2013). https://doi.org/10.1021/ja403849c
  17. S. A. Stern, V. M. Shah, and B. J. Hardy, "Structure-permeability relationships in silicone polymers", J. Polym. Sci., Part B: Polym. Phys., 25, 1263 (1987). https://doi.org/10.1002/polb.1987.090250607
  18. A. Ghadimi, M. Sadrzadeh, K. Shahidi, and T. Mohammadi, "Ternary gas permeation through a synthesized PDMS membrane: Experimental and modeling", J. Membr. Sci., 344, 225 (2009). https://doi.org/10.1016/j.memsci.2009.08.001
  19. L. Deng, Y. Xue, J. Yan, C. H. Lau, B. Cao, and P. Li, "Oxidative crosslinking of copolyimides at sub-$T_g$ temperatures to enhance resistance against $CO_2$-induced plasticization", J. Membr. Sci., 583, 40 (2019). https://doi.org/10.1016/j.memsci.2019.04.002
  20. V. D. Deepak, J. Rajan, and S. K. Asha, "Hydrogen bonding and rate enhancement in the photoinduced polymerization of telechelic urethane methacrylates based on a cycloaliphatic system: Tricyclodecane dimethanol", J. Polym. Sci., Part A: Polym. Chem., 44, 4384 (2006). https://doi.org/10.1002/pola.21533
  21. H. Molavi, A. Shojaei, and S. A. Mousavi, "Improving mixed-matrix membrane performance via PMMA grafting from functionalized $NH_2$-UiO-66", J. Mater. Chem. A, 6, 2775 (2018). https://doi.org/10.1039/C7TA10480D
  22. N. U. Kim, B. J. Park, Y. Choi, K. B. Lee, and J. H. Kim, "High-performance self-cross-linked PGPPOEM comb copolymer membranes for $CO_2$ capture", Macromolecules, 50, 8938 (2017). https://doi.org/10.1021/acs.macromol.7b02024
  23. A. Georgiev, D. Dimov, E. Spassova, J. Assa, and G. Danev, "Investigation of solid state imidization reactions of the vapour deposited azo-polyimide thin films by FTIR spectroscopy", J. Mol. Struct., 1074, 100 (2014). https://doi.org/10.1016/j.molstruc.2014.05.070
  24. P. Ottiger, C. Pfaffen, R. Leist, S. Leutwyler, R. A. Bachorz, and W. Klopper, "Strong N-H...${\pi}$ hydrogen bonding in amide-benzene interactions", J. Phys. Chem. B, 113, 2937 (2009). https://doi.org/10.1021/jp8110474
  25. Z. Li, J. Jiang, G. Lei, and D. Gao, "Gel polymer electrolyte prepared by in situ polymerization of MMA monomers in room temperature ionic liquid", Polym. Adv. Technol., 17, 604 (2006). https://doi.org/10.1002/pat.760
  26. Y. Lv, J. Tian, and H. Jiang, "Three-parameter correlation for the temperature dependent thermal conductivity of saturated liquids", Fluid Phase Equilib., 514, 112563 (2020). https://doi.org/10.1016/j.fluid.2020.112563
  27. Y. Liu, B. Zhang, D. Liu, P. Sheng, and Z. Lai, "Fabrication and molecular transport studies of highly c-Oriented AFI membranes", J. Membr. Sci., 528, 46 (2017). https://doi.org/10.1016/j.memsci.2017.01.012
  28. N. Kawachale, A. Kumar, and D. M. Kirpalani, "Numerical investigation of hydrocarbon enrichment of process gas mixtures by permeation through polymeric membranes", Chem. Eng. Technol., 31, 58 (2008). https://doi.org/10.1002/ceat.200700263
  29. L. M. Robeson, Z. P. Smith, B. D. Freeman, and D. R. Paul, "Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes", J. Membr. Sci., 453, 71 (2014). https://doi.org/10.1016/j.memsci.2013.10.066
  30. N. U. Kim, B. J. Park, M. S. Park, J. T. Park, and J. H. Kim, "Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for $CO_2$ capture", Chem. Eng. J., 360, 1468 (2019). https://doi.org/10.1016/j.cej.2018.10.152
  31. W. Yave, A. Car, S. S. Funari, S. P. Nunes, and K.-V. Peinemann, "$CO_2$-philic polymer membrane with extremely high separation performance", Macromolecules, 43, 326 (2010). https://doi.org/10.1021/ma901950u
  32. S.-Y. Kim, T.-U. Yoon, J. H. Kang, A.-R. Kim, T.-H. Kim, S.-I. Kim, W. Park, K. C. Kim, and Y.-S. Bae, "Observation of olefin/paraffin selectivity in Azo compound and its application into a metal-organic framework", ACS Appl. Mater. Interfaces, 10, 27521 (2018). https://doi.org/10.1021/acsami.8b09739