DOI QR코드

DOI QR Code

Development of Hybrid Metals Coated Carbon Fibers for High-Efficient Electromagnetic Interference Shielding

고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발

  • Moon, Jai Joung (Advanced Materials Research Institute for BIN Convergence Technology & Department of BIN Convergence Technology, Jeonbuk National University) ;
  • Park, Ok-Kyung (Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Jeonbuk National University) ;
  • Lee, Joong Hee (Advanced Materials Research Institute for BIN Convergence Technology & Department of BIN Convergence Technology, Jeonbuk National University)
  • Received : 2020.05.14
  • Accepted : 2020.07.09
  • Published : 2020.08.31

Abstract

In this study, a hybrid metals such as copper (Cu) and nickel (Ni) coated carbon fibers (Ni-Cu/CFs) was prepared by wet laid method to develop a randomly oriented sheet material for high-efficiency electromagnetic interference shielding with the enhanced durability. The prepared sheet materials show a high electromagnetic interference shielding efficiency of 69.4 to 93.0 dB. In addition, the hybrid metals coated Ni-Cu/CFs sheets showed very high durability with harsh chemical/thermal environments due to the effective corrosive and mechanical resistances of Ni surface. In this context, the Ni-Cu/CF sheet possesses longer service life than the Cu/CF sheet, that is, 1.7 times longer.

본 연구에서는 향상된 내구성을 가진 고효율 전자파차폐용 랜덤배향 시트 소재를 개발하기 위해 구리(Copper: Cu)와 니켈 (Nickel: Ni)이 코팅된 탄소섬유(Carbon fiber: CF)와 같은 하이브리드 소재를 습식공정을 통해 제조 하였다. 제조된 시트 소재는 69.4~93.0 dB의 높은 전자파 차폐효율을 보여주었다. 또한 하이브리드 금속으로 코팅된 Ni-Cu/CFs 시트는 Ni표면의 유효한 부식저항성과 기계적 저항성 때문에 가혹한 화학적/열적 환경하에서 매우 우수한 내구성을 보여주었다. 이와 관련하여 Ni-Cu/CF 시트는 Cu/CF 시트와 비교하여 1.7배 긴 수명을 가지는 것을 확인하였다.

Keywords

References

  1. Lee, S.-H., and Oh, I.-K., "Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding," Composites Research, Vol. 29, No. 4, 2016, pp. 138-144. https://doi.org/10.7234/composres.2016.29.4.138
  2. Xing, D., Lu, L., The, K.S., Wan, A., Xie, Y., and Tang, Y., "Highly Flexible and Ultra-thin Ni-plated Carbon-Fabric/Polycarbonate Film for Enhanced Electromagnetic Interference Shielding," Carbon, Vol. 132, 2018, pp. 32-41. https://doi.org/10.1016/j.carbon.2018.02.001
  3. Lee, K., Lee, J., Jung, B.M., Lee, S.B, and Kim, T., "Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites", Composites Research, Vol. 31, No. 3, 2018, pp. 111-116. https://doi.org/10.7234/COMPOSRES.2018.31.3.111
  4. Choi, J.R., Jung, B.M., Choi, U.H., Cho, S.C., Park, K.H., Kim, W.-J., Lee, S.-K, and Lee, S.B., "Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding", Composites Research, Vol. 28, No. 6, 2015, pp. 333-339. https://doi.org/10.7234/composres.2015.28.6.333
  5. Singh, S., and Kappor, N., "Health Implications of Electromagnetic Fields, Mechanisms of Action, and Research Needs," Advances in Biology, Vol. 2014, 2014, pp. 198609.
  6. Zhang, J., Li, J., Tan, G., Hu, R., Wang, J., Chang, C., and Wang, X., "Thin and Flexible Fe-Si-B/Ni-Cu-P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding," ACS Applied Materials & Interfaces, Vol. 9, No. 48, 2017, pp. 42192-42199. https://doi.org/10.1021/acsami.7b12504
  7. Wang, L., Qiu, H., Liang, C., Song, P., Han, Y., Han, Y., Gu, J., Kong, J., Pan, D, and Guo, Z., "Electromagnetic Interference Shielding MWCNT-$Fe_3O_4$@Ag/Epoxy Nanocomposites with Satisfactory Thermal Conductivity and High Thermal Stability," Carbon, Vol. 141, 2019, pp. 506-514. https://doi.org/10.1016/j.carbon.2018.10.003
  8. Ji, K., Zhao, H., Zhang, J., Chen, J., and Dai, Z., "Fabrication and Electromagnetic Interference Shielding Performance of Open-Cell Foam of a Cu-Ni Alloy integrated with CNTs," Applied Surface Science, Vol. 311, 2014, pp. 351-356. https://doi.org/10.1016/j.apsusc.2014.05.067
  9. Chen, Z., Xu, C., Ma, C., Ren, W., and Cheng, H.-M., "Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding," Advanced Materials, Vol. 25, No. 9, 2013, pp. 1296-1300. https://doi.org/10.1002/adma.201204196
  10. Sankaran, S., Deshmukh, K., Ahamed, M.B., and Pasha, S.K.K., "Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler reinforced Flexible Polymer Composites: A Review," Composites Part A: Applied Science and Manufacturing, Vol. 114, 2018, pp. 49-71. https://doi.org/10.1016/j.compositesa.2018.08.006
  11. Tzeng, S.-S, and Chang, F.-Y., " EMI Shielding Effectiveness of Metal-coated Carbon Fiber-reinforced ABS Composites," Materials Science and Engineering: A, Vol. 302, No. 2, 2001, pp. 258-267. https://doi.org/10.1016/S0921-5093(00)01824-4
  12. Su, Y., Zhou, B., Liu, L., Lian, J., and Li, G., "Electromagnetic Shielding and Corrosion Resistance of Electroless Ni-P and Ni-P-Cu Coating on Polymer/Carbon Fiber Composites," Polymer Composite, Vol. 36, No. 5, 2015, pp. 923-930. https://doi.org/10.1002/pc.23012
  13. Zheng, P.Y., Deng, R.P., and Gall, D., "Ni doping on Cu Surfaces: Reduced Copper Resistivity", Applied Physics Letters, Vol. 105, 2014, pp. 131603. https://doi.org/10.1063/1.4897009
  14. Zhang, W.X., Jing, Z.H., Li, G.Y., Jiang, Q., and Lain, J.S., "Electroless Ni-P/Ni-B Duplex Coating for Improving the Hardness and the Corrosion Resistance of AZ91D Magnesium Alloy," Applied Surface Science, Vol. 254, No. 16, 2008, pp. 4949-4955. https://doi.org/10.1016/j.apsusc.2008.01.144
  15. Liu, Y., and Zhao, Q., "Study of Electroless Ni-Cu-P Coating and Their Anti-Corrosion Properties," Applied Surface Science, Vol. 228, No. 1-4, 2004, pp. 57-62. https://doi.org/10.1016/j.apsusc.2003.12.031
  16. Caranza, R.M., and Robriguez, M.A., "Crevice Corrosion of Nickel-based Alloys Considered as Engineering Barrier of Geological Repositories," npj Materials Degradation, Vol. 1, 2017, pp. 9. https://doi.org/10.1038/s41529-017-0010-5