DOI QR코드

DOI QR Code

Chicken consumption and insulin resistance in non-diabetic older adults

  • Yeum, Kyung-Jin (Division of Food Bioscience, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Young-Sang (Department of Family Medicine, CHA Bundang Medical Center, CHA University) ;
  • Joo, Nam-Seok (Department of Family Practice and Community Health, Ajou University School of Medicine)
  • Received : 2020.05.04
  • Accepted : 2020.07.07
  • Published : 2020.08.31

Abstract

Purpose: Histidine-containing dipeptides, which are rich in chicken, have been reported to reduce the risk of metabolic abnormalities via anticarbonylation mechanism in animal models. To determine the effect of dietary histidine-containing dipeptides on metabolic risk factors in humans, the relation between chicken consumption and insulin resistance were determined in a population consuming high carbohydrate and low protein. Methods: A total of 7,183 subjects (2,929 men and 4,254 women) aged ≥ 50 years from the Korea National Health and Nutrition Examination Survey (KNHANES) were divided into three groups according to chicken consumption (rarely, monthly, and weekly), and evaluated for the metabolic risk factors using homeostasis model assessment for insulin resistance (HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) in this cross-sectional study. The fourth and fifth (IV-1-3 & V-1) KNHANES, which had blood insulin data, were chosen for the current study. Results: The chicken consumption was significantly associated with insulin (p for trend = 0.018) and HOMA-IR (p for trend = 0.023) in men. In particular, the 'weekly' chicken consuming men in the lowest tertile (< 65.0%) of carbohydrate intake group had significantly lower HOMA-IR (p for trend = 0.033) and higher QUICKI (p for trend = 0.043) than the 'rarely' intake group. In addition, the odds ratio for abnormal HOMA-IR was 0.55 (95% confidence interval [CI], 0.31-0.99) and QUICKI was 0.47 (95% CI, 0.26-0.86) for the 'weekly' chicken consuming group. Conclusion: The 'weekly' chicken consumption had a beneficial effect on insulin resistance and it may partially be due to the major bioactive components in chicken, histidine-containing dipeptides.

Keywords

References

  1. Ford ES, Schulze MB, Pischon T, Bergmann MM, Joost HG, Boeing H. Metabolic syndrome and risk of incident diabetes: findings from the European prospective investigation into cancer and nutrition-Potsdam study. Cardiovasc Diabetol 2008; 7(1): 35. https://doi.org/10.1186/1475-2840-7-35
  2. Meigs JB, Rutter MK, Sullivan LM, Fox CS, D'Agostino RB Sr, Wilson PW. Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care 2007; 30(5): 1219-1225. https://doi.org/10.2337/dc06-2484
  3. Martinez-Augustin O, Aguilera CM, Gil-Campos M, Sanchez de Medina F, Gil A. Bioactive anti-obesity food components. Int J Vitam Nutr Res 2012; 82(3): 148-156. https://doi.org/10.1024/0300-9831/a000105
  4. Abete I, Goyenechea E, Zulet MA, Martinez JA. Obesity and metabolic syndrome: potential benefit from specific nutritional components. Nutr Metab Cardiovasc Dis 2011; 21 Suppl 2: B1-B15. https://doi.org/10.1016/j.numecd.2011.05.001
  5. Czekajlo A, Rozanska D, Zatonska K, Szuba A, Regulska-Ilow B. Association between dietary patterns and metabolic syndrome in the selected population of Polish adults-results of the PURE Poland study. Eur J Public Health 2019; 29(2): 335-340. https://doi.org/10.1093/eurpub/cky207
  6. Hassannejad R, Mohammadifard N, Kazemi I, Mansourian M, Sadeghi M, Roohafza H, et al. Long-term nuts intake and metabolic syndrome: a 13-year longitudinal population-based study. Clin Nutr 2019; 38(3): 1246-1252. https://doi.org/10.1016/j.clnu.2018.05.006
  7. Aldini G, Orioli M, Rossoni G, Savi F, Braidotti P, Vistoli G, et al. The carbonyl scavenger carnosine ameliorates dyslipidaemia and renal function in Zucker obese rats. J Cell Mol Med 2011; 15(6): 1339-1354. https://doi.org/10.1111/j.1582-4934.2010.01101.x
  8. Lee YT, Hsu CC, Lin MH, Liu KS, Yin MC. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol 2005; 513(1-2): 145-150. https://doi.org/10.1016/j.ejphar.2005.02.010
  9. Riedl E, Pfister F, Braunagel M, Brinkkotter P, Sternik P, Deinzer M, et al. Carnosine prevents apoptosis of glomerular cells and podocyte loss in STZ diabetic rats. Cell Physiol Biochem 2011; 28(2): 279-288. https://doi.org/10.1159/000331740
  10. Yan H, Guo Y, Zhang J, Ding Z, Ha W, Harding JJ. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Mol Vis 2008; 14: 2282-2291.
  11. Aldini G, Facino RM, Beretta G, Carini M. Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives. Biofactors 2005; 24(1-4): 77-87. https://doi.org/10.1002/biof.5520240109
  12. Aydin F, Kalaz EB, Kucukgergin C, Coban J, Dogru-Abbasoglu S, Uysal M. Carnosine treatment diminished oxidative stress and glycation products in serum and tissues of D-galactose-treated rats. Curr Aging Sci 2018; 11(1): 10-15. https://doi.org/10.2174/1871530317666170703123519
  13. Aldini G. Advanced analytical strategies for recombinant therapeutic proteins. Curr Pharm Biotechnol 2011; 12(10): 1507. https://doi.org/10.2174/138920111798357366
  14. Peiretti PG, Medana C, Visentin S, Giancotti V, Zunino V, Meineri G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem 2011; 126(4): 1939-1947. https://doi.org/10.1016/j.foodchem.2010.12.036
  15. Joo NS, Dawson-Hughes B, Kim YS, Oh K, Yeum KJ. Impact of calcium and vitamin D insufficiencies on serum parathyroid hormone and bone mineral density: analysis of the fourth and fifth Korea National Health and Nutrition Examination Survey (KNHAENS IV-3, 2009 and V-1, 2010). J Bone Miner Res 2013; 28(4): 764-770. https://doi.org/10.1002/jbmr.1790
  16. National Rural Resources Development Institute, Rural Development Administration. Food composition table. 7th ed. Suwon: Rural Development Administration; 2006.
  17. Ehrhardt N, Cui J, Dagdeviren S, Saengnipanthkul S, Goodridge HS, Kim JK, et al. Adiposity-independent effects of aging on insulin sensitivity and clearance in mice and humans. Obesity (Silver Spring) 2019; 27(3): 434-443. https://doi.org/10.1002/oby.22418
  18. Venkatasamy VV, Pericherla S, Manthuruthil S, Mishra S, Hanno R. Effect of physical activity on insulin resistance, inflammation and oxidative stress in diabetes mellitus. J Clin Diagn Res 2013; 7(8): 1764-1766. https://doi.org/10.7860/JCDR/2013/6518.3306
  19. Chen L, Zhu H, Gutin B, Dong Y. Race, gender, family structure, socioeconomic status, dietary patterns, and cardiovascular health in adolescents. Curr Dev Nutr 2019; 3(11): nzz117. https://doi.org/10.1093/cdn/nzz117
  20. Chen SE, Sawchuk RJ, Staba EJ. American ginseng. III. Pharmacokinetics of ginsenosides in the rabbit. Eur J Drug Metab Pharmacokinet 1980; 5(3): 161-168. https://doi.org/10.1007/BF03189460
  21. Yan YX, Xiao HB, Wang SS, Zhao J, He Y, Wang W, et al. Investigation of the relationship between chronic stress and insulin resistance in a Chinese population. J Epidemiol 2016; 26(7): 355-360. https://doi.org/10.2188/jea.JE20150183
  22. Bajaj M. Nicotine and insulin resistance: when the smoke clears. Diabetes 2012; 61(12): 3078-3080. https://doi.org/10.2337/db12-1100
  23. Paulson QX, Hong J, Holcomb VB, Nunez NP. Effects of body weight and alcohol consumption on insulin sensitivity. Nutr J 2010; 9(1): 14. https://doi.org/10.1186/1475-2891-9-14
  24. Biobaku F, Ghanim H, Batra M, Dandona P. Macronutrient-mediated inflammation and oxidative stress: relevance to insulin resistance, obesity, and atherogenesis. J Clin Endocrinol Metab 2019; 104(12): 6118-6128. https://doi.org/10.1210/jc.2018-01833
  25. Lee S, Choi S, Kim HJ, Chung YS, Lee KW, Lee HC, et al. Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J Korean Med Sci 2006; 21(4): 695-700. https://doi.org/10.3346/jkms.2006.21.4.695
  26. Korea Centers for Disease Control and Prevention. Annual health report 2012. Cheongju: Korea Centers for Disease Control and Prevention; 2012.
  27. Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Washington, D.C.; The National Academies Press; 2005.
  28. Cha HM, Han G, Chung HJ. A study on the trend analysis regarding the rice consumption of Korean adults using Korean National Health and Nutrition Examination Survey data from 1998, 2001 and 2005. Nutr Res Pract 2012; 6(3): 254-262. https://doi.org/10.4162/nrp.2012.6.3.254
  29. Sun Q, Spiegelman D, van Dam RM, Holmes MD, Malik VS, Willett WC, et al. White rice, brown rice, and risk of type 2 diabetes in US men and women. Arch Intern Med 2010; 170(11): 961-969. https://doi.org/10.1001/archinternmed.2010.109
  30. Palacios OM, Kramer M, Maki KC. Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expert Rev Endocrinol Metab 2019; 14(1): 1-12. https://doi.org/10.1080/17446651.2019.1554430
  31. Song Y, Manson JE, Buring JE, Liu S. A prospective study of red meat consumption and type 2 diabetes in middle-aged and elderly women: the women's health study. Diabetes Care 2004; 27(9): 2108-2115. https://doi.org/10.2337/diacare.27.9.2108
  32. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 2011; 94(4): 1088-1096. https://doi.org/10.3945/ajcn.111.018978
  33. Papakonstantinou E, Panagiotakos DB, Pitsavos C, Chrysohoou C, Zampelas A, Skoumas Y, et al. Food group consumption and glycemic control in people with and without type 2 diabetes: the ATTICA study. Diabetes Care 2005; 28(10): 2539-2540. https://doi.org/10.2337/diacare.28.10.2539
  34. Janssen B, Hohenadel D, Brinkkoetter P, Peters V, Rind N, Fischer C, et al. Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 2005; 54(8): 2320-2327. https://doi.org/10.2337/diabetes.54.8.2320
  35. Yeum KJ, Orioli M, Regazzoni L, Carini M, Rasmussen H, Russell RM, et al. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans. Amino Acids 2010; 38(3): 847-858. https://doi.org/10.1007/s00726-009-0291-2
  36. Gil-Agusti M, Esteve-Romero J, Carda-Broch S. Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J Chromatogr A 2008; 1189(1-2): 444-450. https://doi.org/10.1016/j.chroma.2007.11.075
  37. Gualano B, Everaert I, Stegen S, Artioli GG, Taes Y, Roschel H, et al. Reduced muscle carnosine content in type 2, but not in type 1 diabetic patients. Amino Acids 2012; 43(1): 21-24. https://doi.org/10.1007/s00726-011-1165-y
  38. Ascaso JF, Pardo S, Real JT, Lorente RI, Priego A, Carmena R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care 2003; 26(12): 3320-3325. https://doi.org/10.2337/diacare.26.12.3320
  39. Qu HQ, Li Q, Rentfro AR, Fisher-Hoch SP, McCormick JB. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning. PLoS One 2011; 6(6): e21041. https://doi.org/10.1371/journal.pone.0021041
  40. Hellstrom L, Wahrenberg H, Hruska K, Reynisdottir S, Arner P. Mechanisms behind gender differences in circulating leptin levels. J Intern Med 2000; 247(4): 457-462. https://doi.org/10.1046/j.1365-2796.2000.00678.x
  41. Nagai K, Niijima A, Yamano T, Otani H, Okumra N, Tsuruoka N, et al. Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp Biol Med (Maywood) 2003; 228(10): 1138-1145. https://doi.org/10.1177/153537020322801007
  42. Menon K, Marquina C, Liew D, Mousa A, de Courten B. Histidine-containing dipeptides reduce central obesity and improve glycaemic outcomes: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 2020; 21(3): e12975. https://doi.org/10.1111/obr.12975
  43. Pillon NJ, Croze ML, Vella RE, Soulere L, Lagarde M, Soulage CO. The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress. Endocrinology 2012; 153(5): 2099-2111. https://doi.org/10.1210/en.2011-1957
  44. Vistoli G, Colzani M, Mazzolari A, Maddis DD, Grazioso G, Pedretti A, et al. Computational approaches in the rational design of improved carbonyl quenchers: focus on histidine containing dipeptides. Future Med Chem 2016; 8(14): 1721-1737. https://doi.org/10.4155/fmc-2016-0088
  45. Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, et al. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: methodological aspects and biological consequences. Free Radic Biol Med 2017; 111: 328-344. https://doi.org/10.1016/j.freeradbiomed.2017.01.036
  46. Pillon NJ, Vella RE, Souleere L, Becchi M, Lagarde M, Soulage CO. Structural and functional changes in human insulin induced by the lipid peroxidation byproducts 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal. Chem Res Toxicol 2011; 24(5): 752-762. https://doi.org/10.1021/tx200084d
  47. Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, et al. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated $PPAR{\alpha}$ and $PPAR{\beta}/{\delta}$. Cell Tissue Res 2015; 361(2): 593-604. https://doi.org/10.1007/s00441-015-2120-0
  48. Barski OA, Xie Z, Baba SP, Sithu SD, Agarwal A, Cai J, et al. Dietary carnosine prevents early atherosclerotic lesion formation in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 2013; 33(6): 1162-1170. https://doi.org/10.1161/ATVBAHA.112.300572