DOI QR코드

DOI QR Code

miR-4463 regulates aromatase expression and activity for 17β-estradiol synthesis in response to follicle-stimulating hormone

  • Lee, Su-Yeon (Department of Biomedical Science, College of Life Science, Institute of Reproductive Medicine, CHA University) ;
  • Kang, Youn-Jung (Department of Biomedical Science, College of Life Science, Institute of Reproductive Medicine, CHA University) ;
  • Kwon, Jinie (Department of Biomedical Science, College of Life Science, Institute of Reproductive Medicine, CHA University) ;
  • Nishi, Yoshihiro (Department of Physiology, Kurume University School of Medicine) ;
  • Yanase, Toshihiko (Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University) ;
  • Lee, Kyung-Ah (Department of Biomedical Science, College of Life Science, Institute of Reproductive Medicine, CHA University) ;
  • Koong, Mi Kyoung (Department of Obstetrics and Gynecology, CHA University, Fertility Center, CHA General Hospital)
  • 투고 : 2019.11.08
  • 심사 : 2020.03.23
  • 발행 : 2020.09.30

초록

Objective: The aim of this study was to investigate microRNAs (miRNAs) related to follicle-stimulating hormone (FSH) responsiveness using miRNA microarrays and to identify their target genes to determine the molecular regulatory pathways involved in FSH signaling in KGN cells. Methods: To change the cellular responsiveness to FSH, KGN cells were treated with FSH receptor (FSHR)-specific small interfering RNA (siRNA) followed by FSH. miRNA expression profiles were determined through miRNA microarray analysis. Potential target genes of selected miRNAs were predicted using bioinformatics tools, and their regulatory function was confirmed in KGN cells. Results: We found that six miRNAs (miR-1261, miR-130a-3p, miR-329-3p, miR-185-5p, miR-144-5p and miR-4463) were differentially expressed after FSHR siRNA treatment in KGN cells. Through a bioinformatics analysis, we showed that these miRNAs were predicted to regulate a large number of genes, which we narrowed down to cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and estrogen receptor alpha (ESR1) as the main targets for miR-4463. Functional analysis revealed that miR-4463 is a regulatory factor for aromatase expression and function in KGN cells. Conclusion: In this study, we identified differentially expressed miRNAs related to FSH responsiveness. In particular, upregulation of miR-4463 expression by FSHR deficiency in human granulosa cells impaired 17β-estradiol synthesis by targeting CYP19A1 and ESR1. Therefore, our data might provide novel candidates for molecular biomarkers for use in research into poor responders.

키워드

참고문헌

  1. Tanbo T, Abyholm T, Bjoro T, Dale PO. Ovarian stimulation in previous failures from in-vitro fertilization: distinction of two groups of poor responders. Hum Reprod 1990;5:811-5. https://doi.org/10.1093/oxfordjournals.humrep.a137188
  2. Bar-Hava I, Yoeli R, Yulzari-Roll V, Ashkenazi J, Shalev J, Orvieto R. Controlled ovarian hyperstimulation: does prolonged stimulation justify cancellation of in vitro fertilization cycles? Gynecol Endocrinol 2005;21:232-4. https://doi.org/10.1080/09513590500282331
  3. Fauser BC, Diedrich K, Devroey P; Evian Annual Reproduction Workshop Group 2007. Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Hum Reprod Update 2008;14:1-14. https://doi.org/10.1093/humupd/dmm034
  4. Sheikhha MH, Eftekhar M, Kalantar SM. Investigating the association between polymorphism of follicle-stimulating hormone receptor gene and ovarian response in controlled ovarian hyperstimulation. J Hum Reprod Sci 2011;4:86-90. https://doi.org/10.4103/0974-1208.86089
  5. Danilovich N, Maysinger D, Sairam MR. Perspectives on reproductive senescence and biological aging: studies in genetically altered follitropin receptor knockout [FORKO] mice. Exp Gerontol 2004;39:1669-78. https://doi.org/10.1016/j.exger.2004.05.009
  6. Cai J, Lou HY, Dong MY, Lu XE, Zhu YM, Gao HJ, et al. Poor ovarian response to gonadotropin stimulation is associated with low expression of follicle-stimulating hormone receptor in granulosa cells. Fertil Steril 2007;87:1350-6. https://doi.org/10.1016/j.fertnstert.2006.11.034
  7. Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 1997;18:739-73. https://doi.org/10.1210/edrv.18.6.0320
  8. Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M. Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 2000;85:3365-9. https://doi.org/10.1210/jcem.85.9.6789
  9. Stefani G, Slack F. MicroRNAs in search of a target. Cold Spring Harb Symp Quant Biol 2006;71:129-34. https://doi.org/10.1101/sqb.2006.71.032
  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  11. Lei L, Jin S, Gonzalez G, Behringer RR, Woodruff TK. The regulatory role of Dicer in folliculogenesis in mice. Mol Cell Endocrinol 2010;315:63-73. https://doi.org/10.1016/j.mce.2009.09.021
  12. Yao G, Yin M, Lian J, Tian H, Liu L, Li X, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol 2010;24:540-51. https://doi.org/10.1210/me.2009-0432
  13. Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 2011;152:3941-51. https://doi.org/10.1210/en.2011-1147
  14. Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 2013;587:2474-82. https://doi.org/10.1016/j.febslet.2013.06.023
  15. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010;223:49-56. https://doi.org/10.1002/jcp.21999
  16. Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012;144:235-44. https://doi.org/10.1530/REP-11-0371
  17. Artimani T, Saidijam M, Aflatoonian R, Amiri I, Ashrafi M, Shabab N, et al. Estrogen and progesterone receptor subtype expression in granulosa cells from women with polycystic ovary syndrome. Gynecol Endocrinol 2015;31:379-83. https://doi.org/10.3109/09513590.2014.1001733
  18. Karuputhula NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med 2013;59:91-8. https://doi.org/10.3109/19396368.2012.743197
  19. Havelock JC, Rainey WE, Carr BR. Ovarian granulosa cell lines. Mol Cell Endocrinol 2004;228:67-78. https://doi.org/10.1016/j.mce.2004.04.018
  20. Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosalike tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 2001;142:437-45. https://doi.org/10.1210/en.142.1.437
  21. Nilsson S, Gustafsson JA. Biological role of estrogen and estrogen receptors. Crit Rev Biochem Mol Biol 2002;37:1-28. https://doi.org/10.1080/10409230290771438
  22. Chu S, Nishi Y, Yanase T, Nawata H, Fuller PJ. Transrepression of estrogen receptor beta signaling by nuclear factor-kappab in ovarian granulosa cells. Mol Endocrinol 2004;18:1919-28. https://doi.org/10.1210/me.2004-0021
  23. Wayne CM, Fan HY, Cheng X, Richards JS. Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. Mol Endocrinol 2007;21:1940-57. https://doi.org/10.1210/me.2007-0020
  24. Richards JS, Pangas SA. The ovary: basic biology and clinical implications. J Clin Invest 2010;120:963-72. https://doi.org/10.1172/JCI41350
  25. Gonzalez-Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-lnduced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol 2000;14:1283-300. https://doi.org/10.1210/mend.14.8.0500
  26. Altmae S, Hovatta O, Stavreus-Evers A, Salumets A. Genetic predictors of controlled ovarian hyperstimulation: where do we stand today? Hum Reprod Update 2011;17:813-28. https://doi.org/10.1093/humupd/dmr034
  27. Ryan KJ. Biochemistry of aromatase: significance to female reproductive physiology. Cancer Res 1982;42:3342s-3344s.
  28. Britt KL, Findlay JK. Estrogen actions in the ovary revisited. J Endocrinol 2002;175:269-76. https://doi.org/10.1677/joe.0.1750269
  29. Gerasimova T, Thanasoula MN, Zattas D, Seli E, Sakkas D, Lalioti MD. Identification and in vitro characterization of follicle stimulating hormone (FSH) receptor variants associated with abnormal ovarian response to FSH. J Clin Endocrinol Metab 2010;95:529-36. https://doi.org/10.1210/jc.2009-1304
  30. Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L, et al. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod 2011;26:1616-24. https://doi.org/10.1093/humrep/der092
  31. Padhy N, Gupta S, Mahla A, Latha M, Varma T. Demographic characteristics and clinical profile of poor responders in IVF/ICSI: a comparative study. J Hum Reprod Sci 2010;3:91-4. https://doi.org/10.4103/0974-1208.69343
  32. Hendriks DJ, te Velde ER, Looman CW, Bancsi LF, Broekmans FJ. Expected poor ovarian response in predicting cumulative pregnancy rates: a powerful tool. Reprod Biomed Online 2008;17:727-36. https://doi.org/10.1016/S1472-6483(10)60323-9
  33. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 2006;12:685-718. https://doi.org/10.1093/humupd/dml034
  34. Licciardi FL, Liu HC, Rosenwaks Z. Day 3 estradiol serum concentrations as prognosticators of ovarian stimulation response and pregnancy outcome in patients undergoing in vitro fertilization. Fertil Steril 1995;64:991-4. https://doi.org/10.1016/S0015-0282(16)57916-3
  35. Seifer DB, Maclaughlin DT. Mullerian Inhibiting Substance is an ovarian growth factor of emerging clinical significance. Fertil Steril 2007;88:539-46. https://doi.org/10.1016/j.fertnstert.2007.02.014
  36. Gibreel A, Maheshwari A, Bhattacharya S, Johnson NP. Ultrasound tests of ovarian reserve: a systematic review of accuracy in predicting fertility outcomes. Hum Fertil (Camb) 2009;12:95-106. https://doi.org/10.1080/14647270902896256
  37. Tufekci KU, Meuwissen RL, Genc S. The role of microRNAs in biological processes. Methods Mol Biol 2014;1107:15-31. https://doi.org/10.1007/978-1-62703-748-8_2
  38. Xie S, Batnasan E, Zhang Q, Li Y. MicroRNA expression is altered in granulosa cells of ovarian hyperresponders. Reprod Sci 2016;23:1001-10. https://doi.org/10.1177/1933719115625849
  39. Hong L, Peng S, Li Y, Fang Y, Wang Q, Klausen C, et al. MiR-106a increases granulosa cell viability and is downregulated in women with diminished ovarian reserve. J Clin Endocrinol Metab 2018;103:2157-66. https://doi.org/10.1210/jc.2017-02344
  40. Karakaya C, Guzeloglu-Kayisli O, Uyar A, Kallen AN, Babayev E, Bozkurt N, et al. Poor ovarian response in women undergoing in vitro fertilization is associated with altered microRNA expression in cumulus cells. Fertil Steril 2015;103:1469-76. https://doi.org/10.1016/j.fertnstert.2015.02.035
  41. Simoni M, Nieschlag E, Gromoll J. Isoforms and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction. Hum Reprod Update 2002;8:413-21. https://doi.org/10.1093/humupd/8.5.413
  42. Romereim SM, Summers AF, Pohlmeier WE, Zhang P, Hou X, Talbott HA, et al. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions. Mol Cell Endocrinol 2017;439:379-94. https://doi.org/10.1016/j.mce.2016.09.029
  43. Tian X, Fei Q, Du M, Zhu H, Ye J, Qian L, et al. MiR-130a-3p regulated $TGF-{\beta}1$-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med 2019;8:1197-208. https://doi.org/10.1002/cam4.1981
  44. Kong X, Zhang J, Li J, Shao J, Fang L. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem Biophys Res Commun 2018;501:486-93. https://doi.org/10.1016/j.bbrc.2018.05.018
  45. Chen X, Yue B, Zhang C, Qi M, Qiu J, Wang Y, et al. MiR-130a-3p inhibits the viability, proliferation, invasion, and cell cycle, and promotes apoptosis of nasopharyngeal carcinoma cells by suppressing BACH2 expression. Biosci Rep 2017;37:BSR20160576. https://doi.org/10.1042/BSR20160576
  46. Ostadrahimi S, Abedi Valugerdi M, Hassan M, Haddad G, Fayaz S, Parvizhamidi M, et al. MiR-1266-5p and miR-185-5p promote cell apoptosis in human prostate cancer cell lines. Asian Pac J Cancer Prev 2018;19:2305-11.
  47. Ni W, Xia Y, Bi Y, Wen F, Hu D, Luo L. FoxD2-AS1 promotes glioma progression by regulating miR-185-5P/HMGA2 axis and PI3K/AKT signaling pathway. Aging (Albany NY) 2019;11:1427-39. https://doi.org/10.18632/aging.101843
  48. Shen F, Chang H, Gao G, Zhang B, Li X, Jin B. Long noncoding RNA FOXD2-AS1 promotes glioma malignancy and tumorigenesis via targeting miR-185-5p/CCND2 axis. J Cell Biochem 2019;120:9324-36. https://doi.org/10.1002/jcb.28208
  49. Li W, Liang J, Zhang Z, Lou H, Zhao L, Xu Y, et al. MicroRNA-329-3p targets MAPK1 to suppress cell proliferation, migration and invasion in cervical cancer. Oncol Rep 2017;37:2743-50. https://doi.org/10.3892/or.2017.5555
  50. Lu G, Wong MS, Xiong MZ, Leung CK, Su XW, Zhou JY, et al. Circulating microRNAs in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage. J Am Heart Assoc 2017;6:e005363. https://doi.org/10.1161/JAHA.116.005363
  51. He XM, Zheng YQ, Liu SZ, Liu Y, He YZ, Zhou XY. Altered plasma microRNAs as novel biomarkers for arteriosclerosis obliterans. J Atheroscler Thromb 2016;23:196-206. https://doi.org/10.5551/jat.30775
  52. Wang X, He X, Deng X, He Y, Zhou X. Roles of miR-4463 in H2O2-induced oxidative stress in human umbilical vein endothelial cells. Mol Med Rep 2017;16:3242-52. https://doi.org/10.3892/mmr.2017.7001
  53. He X, Du C, Zou Y, Long Y, Huang C, Chen F, et al. Downregulation of microRNA-4463 attenuates high-glucose- and hypoxia-induced endothelial cell injury by targeting PNUTS. Cell Physiol Biochem 2018;49:2073-87. https://doi.org/10.1159/000493717
  54. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep 2018;38:BSR20180150. https://doi.org/10.1042/BSR20180150
  55. Ding CF, Chen WQ, Zhu YT, Bo YL, Hu HM, Zheng RH. Circulating microRNAs in patients with polycystic ovary syndrome. Hum Fertil (Camb) 2015;18:22-9. https://doi.org/10.3109/14647273.2014.956811
  56. Jamnongjit M, Hammes SR. Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle 2006;5:1178-83. https://doi.org/10.4161/cc.5.11.2803
  57. Ito Y, Fisher CR, Conte FA, Grumbach MM, Simpson ER. Molecular basis of aromatase deficiency in an adult female with sexual infantilism and polycystic ovaries. Proc Natl Acad Sci U S A 1993;90:11673-7. https://doi.org/10.1073/pnas.90.24.11673

피인용 문헌

  1. miR-130a-3p regulates steroid hormone synthesis in goat ovarian granulosa cells by targeting the PMEPA1 gene vol.165, 2020, https://doi.org/10.1016/j.theriogenology.2021.02.012
  2. High-throughput miRNA sequencing of the human placenta: expression throughout gestation vol.13, pp.13, 2020, https://doi.org/10.2217/epi-2021-0055