References
-
J. ARNDT,
${\pi}$ -Unleashed, New York: Springer-Verlag, 2000. - C. BARTLETT, The design of the great pyramid of Khufu, Nexus Network Journal 16 (2014), 299-311. https://doi.org/10.1007/s00004-014-0193-9
- C. BEARD, The Fibonacci drawing board design of the great pyramid of Gizeh, The Fibonacci Quarterly 6 (1968), 66-68.
-
P. BECKMANN, A history of
${\pi}$ , New York: St. Martin's Press, 1971. - M. BERNAL, Black Athena, Vol. II: The archaeological and documentary evidence, New Jersey: Rutgers University Press, 1991.
- M. BERNAL, Black Athena writes back: Martin Bernal responds to his critics, Durham & London: Duke University Press, 2001.
- F. CAJORI, A history of mathematics, 5th Ed. Rhode Island: AMS Chelsea Publishing, 1991.
- P. CALTER, Squaring the circle: Geometry in art and architecture, New Jersey: Wiley, 2008.
- A. CHACE, The Rhind mathematical papyrus, Virginia: NCTM, 1979.
- L. COOPER, A new interpretation of problem 10 of the Moscow Mathematical Papyrus, Historia Mathematica 37 (2010), 11-27. https://doi.org/10.1016/j.hm.2009.05.001
- L. COOPER, Did Egyptian scribes have an algorithmic means for determining the circumference of a circle? Historia Mathematica 38 (2011), 455-484. https://doi.org/10.1016/j.hm.2011.06.001
- J. DERBYSHIRE, Unknown quantity: A real and imaginary history of algebra, Washington: Joseph Henry Press, 2006.
- C. DIOP, Civilization or barbarism: An authentic anthropology, Chicago: Lawren Hill Books, 1981.
- H. EBBINGHAUA et al, Numbers, New York: Springer-Verlag, 1991.
- EUCLID, Elements, Ed. and Trans. by T. L. HEATH, 3 vols. 2nd Ed. New York: Dover, 1956.
- H. EVES, An introduction to the history of mathematics, 6th Ed. New York: Saunders College Publishing, 1990.
- J. FRIBERG, Unexpected links between Egyptian and Babylonian mathematics, New Jersey: World Scientific, 2005.
- J. FRIBERG, Amazing traces of a Babylonian origin in Greek mathematics, New Jersey: World Scientific, 2007.
- J. FRIBERG, A remarkable collection of Babylonian mathematical texts, New York: Springer, 2007.
- D. FOWLER, A generalization of the golden section, The Fibonacci Quarterly 20 (1982), 146-158.
- D. FOWLER, and E. ROBSON, Square Root Approximations in Old Babylonian mathematics: YBC 7289 in Context, Historia Mathematica 25 (1998), 366-378, https://doi.org/10.1006/hmat.1998.2209
- R. GILLINGS, Mathematics in the time of the pharaohs, New York: Dover, 1972.
- J. HAMBIDGE, The elements of dynamic symmetry, New York: Brantano's Publishers, 1926.
- T. HEATH, A history of Greek mathematics, Vol. II: From Aristarchus to Diophantus, New York: Dover, 1981.
- W. KNORR, Archimedes and the measurement of the circle: A new interpretation, Archive for History of Exact Sciences 15 (1975/76), 115-140. https://doi.org/10.1007/BF00348496
- W. KNORR, The ancient tradition of geometric problems, Boston: Birkhauser, 1986.
- O. NEUGEBAUER, The exact sciences in antiquity, 2nd Ed. New York: Dover, 1969.
- R. PALTER, Black Athena, Afro-centrism, and the history of science, Hist. Sci. 31(3) (1993), 227-287. https://doi.org/10.1177/007327539303100301
- J. PARK, Cultural and mathematical meanings of regular octagons in Mesopotamia: Examining Islamic art designs, Journal of History Culture and Art Research 7(1) (2018), 301-318. https://doi.org/10.7596/taksad.v7i1.1354
- J. PARK, Plato's geometric figure and Thales theorem: Meno 86e-87b, Mediterranean Review, 13(1) (2020), 45-63.
- M. PARK, J. PARK and K. HONG, Squaring the circle and recognizing right triangles of ancient Egyptians, J. for History of Mathematics 30(4) (2017), 221-232. https://doi.org/10.14477/jhm.2017.30.4.221
- G. PHILLPS, Archimedes the numerical analyst, The American Mathematical Monthly 88(3) (1981), 165-169. https://doi.org/10.1080/00029890.1981.11995216
- K. POPPER, The open society and its enemies, London: Routledge, First published in two volumes in 1945, 2011.
- G. ROBINS and C. SHUTE, Mathematical bases of ancient Egyptian architecture and graphic art, Historia Mathematica 12 (1985), 107-123. https://doi.org/10.1016/0315-0860(85)90002-3
-
A. SIMONSON, Solomon's Sea and
${\pi}$ , The College Mathematical Journal 40(1) (2009), 22-32. https://doi.org/10.1080/07468342.2009.11922332 - B. van der WAERDEN, Science awakening I: Egyptian, Babylonian, and Greek mathematics, A Dresden. trans. Groningen: Nordhoff, 1954.