DOI QR코드

DOI QR Code

Controversial History of Pi in Ancient Egypt, Old Babylonia, and Ancient Greek Mathematics

고대 이집트, 고바빌로니아, 고대 그리스 수학에 나타난 원주율 논쟁

  • Received : 2020.04.10
  • Accepted : 2020.08.20
  • Published : 2020.08.31

Abstract

We examine how the formulas of the area and the circumference of a circle related to pi in the ancient Egyptian and the Old Babylonian fields of mathematics have been controversial. In particular, the Great Pyramid of Khufu, Ahmes Papyrus Problem 48 and Moscow Mathematical Papyrus Problem 10 have raised extensive controversy over π. We propose the pi-theory of the Great Pyramid of Khufu as a dynamic symmetry based on Euclid's rectangle. In addition, we argue that the ancient Egyptian or Old Babylonian mathematics influenced Solomon's Molten Sea, Plato and Archimedes' pi.

Keywords

References

  1. J. ARNDT, ${\pi}$-Unleashed, New York: Springer-Verlag, 2000.
  2. C. BARTLETT, The design of the great pyramid of Khufu, Nexus Network Journal 16 (2014), 299-311. https://doi.org/10.1007/s00004-014-0193-9
  3. C. BEARD, The Fibonacci drawing board design of the great pyramid of Gizeh, The Fibonacci Quarterly 6 (1968), 66-68.
  4. P. BECKMANN, A history of ${\pi}$, New York: St. Martin's Press, 1971.
  5. M. BERNAL, Black Athena, Vol. II: The archaeological and documentary evidence, New Jersey: Rutgers University Press, 1991.
  6. M. BERNAL, Black Athena writes back: Martin Bernal responds to his critics, Durham & London: Duke University Press, 2001.
  7. F. CAJORI, A history of mathematics, 5th Ed. Rhode Island: AMS Chelsea Publishing, 1991.
  8. P. CALTER, Squaring the circle: Geometry in art and architecture, New Jersey: Wiley, 2008.
  9. A. CHACE, The Rhind mathematical papyrus, Virginia: NCTM, 1979.
  10. L. COOPER, A new interpretation of problem 10 of the Moscow Mathematical Papyrus, Historia Mathematica 37 (2010), 11-27. https://doi.org/10.1016/j.hm.2009.05.001
  11. L. COOPER, Did Egyptian scribes have an algorithmic means for determining the circumference of a circle? Historia Mathematica 38 (2011), 455-484. https://doi.org/10.1016/j.hm.2011.06.001
  12. J. DERBYSHIRE, Unknown quantity: A real and imaginary history of algebra, Washington: Joseph Henry Press, 2006.
  13. C. DIOP, Civilization or barbarism: An authentic anthropology, Chicago: Lawren Hill Books, 1981.
  14. H. EBBINGHAUA et al, Numbers, New York: Springer-Verlag, 1991.
  15. EUCLID, Elements, Ed. and Trans. by T. L. HEATH, 3 vols. 2nd Ed. New York: Dover, 1956.
  16. H. EVES, An introduction to the history of mathematics, 6th Ed. New York: Saunders College Publishing, 1990.
  17. J. FRIBERG, Unexpected links between Egyptian and Babylonian mathematics, New Jersey: World Scientific, 2005.
  18. J. FRIBERG, Amazing traces of a Babylonian origin in Greek mathematics, New Jersey: World Scientific, 2007.
  19. J. FRIBERG, A remarkable collection of Babylonian mathematical texts, New York: Springer, 2007.
  20. D. FOWLER, A generalization of the golden section, The Fibonacci Quarterly 20 (1982), 146-158.
  21. D. FOWLER, and E. ROBSON, Square Root Approximations in Old Babylonian mathematics: YBC 7289 in Context, Historia Mathematica 25 (1998), 366-378, https://doi.org/10.1006/hmat.1998.2209
  22. R. GILLINGS, Mathematics in the time of the pharaohs, New York: Dover, 1972.
  23. J. HAMBIDGE, The elements of dynamic symmetry, New York: Brantano's Publishers, 1926.
  24. T. HEATH, A history of Greek mathematics, Vol. II: From Aristarchus to Diophantus, New York: Dover, 1981.
  25. W. KNORR, Archimedes and the measurement of the circle: A new interpretation, Archive for History of Exact Sciences 15 (1975/76), 115-140. https://doi.org/10.1007/BF00348496
  26. W. KNORR, The ancient tradition of geometric problems, Boston: Birkhauser, 1986.
  27. O. NEUGEBAUER, The exact sciences in antiquity, 2nd Ed. New York: Dover, 1969.
  28. R. PALTER, Black Athena, Afro-centrism, and the history of science, Hist. Sci. 31(3) (1993), 227-287. https://doi.org/10.1177/007327539303100301
  29. J. PARK, Cultural and mathematical meanings of regular octagons in Mesopotamia: Examining Islamic art designs, Journal of History Culture and Art Research 7(1) (2018), 301-318. https://doi.org/10.7596/taksad.v7i1.1354
  30. J. PARK, Plato's geometric figure and Thales theorem: Meno 86e-87b, Mediterranean Review, 13(1) (2020), 45-63.
  31. M. PARK, J. PARK and K. HONG, Squaring the circle and recognizing right triangles of ancient Egyptians, J. for History of Mathematics 30(4) (2017), 221-232. https://doi.org/10.14477/jhm.2017.30.4.221
  32. G. PHILLPS, Archimedes the numerical analyst, The American Mathematical Monthly 88(3) (1981), 165-169. https://doi.org/10.1080/00029890.1981.11995216
  33. K. POPPER, The open society and its enemies, London: Routledge, First published in two volumes in 1945, 2011.
  34. G. ROBINS and C. SHUTE, Mathematical bases of ancient Egyptian architecture and graphic art, Historia Mathematica 12 (1985), 107-123. https://doi.org/10.1016/0315-0860(85)90002-3
  35. A. SIMONSON, Solomon's Sea and ${\pi}$, The College Mathematical Journal 40(1) (2009), 22-32. https://doi.org/10.1080/07468342.2009.11922332
  36. B. van der WAERDEN, Science awakening I: Egyptian, Babylonian, and Greek mathematics, A Dresden. trans. Groningen: Nordhoff, 1954.