DOI QR코드

DOI QR Code

In vitro antibacterial activities of Pozzolan as a dietary silicate minerals supplementation to animals

가축에 대한 보조사료 규산염제로서 포졸란의 in vitro 항균 효과

  • Kim, Chang-Hyun (School of Animal Life Convergence Science, Hankyong National University) ;
  • Um, Kyung-Hwan (College of Animal Life Sciences, Kangwon National University) ;
  • Park, Byung-Sung (College of Animal Life Sciences, Kangwon National University)
  • 김창현 (한경대학교 동물생명융합학부) ;
  • 엄경환 (강원대학교 일반대학원) ;
  • 박병성 (강원대학교 동물생명과학대학)
  • Received : 2020.08.01
  • Accepted : 2020.08.20
  • Published : 2020.08.31

Abstract

The purpose of this study was to investigate in vitro antibacterial activities of pozzolan against super bacteria and intestinal bacteria. There were four treatment groups: 1) CON, pozzolan free control group; 2) DP0.3, microbial culture medium prepared by mixing distilled water and 0.3% of pozzolan powder; 3) DP0.5, microbial culture medium prepared by mixing distilled water and 0.5% of pozzolan powder; and 4) PE, microbial culture medium prepared with pozzolan powder extracts without adding distilled water. The count of Lacctobacillus casei was significantly higher in the DP0.3 group compared to CON (P<0.05). However, it showed no significant difference compared to other treatment groups. Numbers of Clostridium butyricum, Escherichia coli, and Salmonella typhimurium were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). Clostridium butyricum and Salmonella typhimurium counts were significantly different among DP0.3, DP0.5, and PE groups (P<0.05). Counts of E. coli were also significantly between DP0.5 and PE groups (P<0.05). Counts of MRSA and VRE were significantly lower in pozzolanic treatment groups compared to CON (P<0.05). MRSA counts were significantly different among DP0.5, DP0.3 and PE groups. VRE counts were significantly higher in the order of PE > DP0.3> DP0.5> CON (P<0.05). These results suggest that pozzolan could be used as a dietary silicate supplement and a natural antibacterial agent for livestock if its antimicrobial activity against super bacteria and harmful bacteria in the intestine is confirmed.

본 연구의 목적은 포졸란의 항생제 내성균과 장내 유해 미생물 억제에 관한 체외배양 항균 활성을 조사하는 것이었다. 대조군 (CON, 포졸란 무첨가 대조군)과 DP0.3 (증류수와 포졸란 분말 0.3%를 혼합하여 제조한 배지군), DP0.5 (증류수와 포졸란 분말 0.5%를 혼합하여 제조한 배지군), PE (포졸란 분말 추출물을 이용하여 제조한 배지군)으로 구분하였다. Lacctobacillus casei 균수는 CON과 비교할 때 DP0.3 처리군에서 유의하게 높았으나 (P<0.05) 기타 처리구 사이의 차이는 없었다. Clostridium butyricum, E. coli, Salmonella typhimurium 균수는 CON과 비교할 때 포졸란 처리구가 유의하게 낮았다 (P<0.05). Clostridium butyricum, Salmonella typhimurium 균수는 DP0.3, DP0.5와 PE 사이, E. coli 균수는 DP0.5와 PE 사이의 유의차가 있었다 (P<0.05). MRSA와 VRE의 균수는 CON과 비교할 때 포졸란 처리구가 유의하게 낮았다 (P<0.05). MRSA 균수는 DP0.5와 DP0.3, PE 사이의 차이가 있었고, VRE 균수는 PE> DP0.3> DP0.5> CON 처리구 순서로 유의하게 높았다(P<0.05). 이와 같은 결과를 통해 포졸란의 항생제 내성균 및 장내 유해 미생물에 대한 항균활성이 확인됨에 따라 가축용 천연항균제, 보조사료 규산염제로써의 활용이 가능할 것으로 보인다.

Keywords

References

  1. S. O. Park, J. H. Shin, W. K. Choi, B. S. Park, A. Jang, "Antibacterial activity of house fly-maggot extracts against MRSA (Methicillin-resistant Staphylococcus aureus) and VRE (Vancomycin-resistant enterococci)", Jouranal of Environmental Biology, Vol.31, No.5 pp. 865-871, (2010).
  2. J. S. Lee, M. H. Lee, J. N. Lee, "Antioxidant and antimicrobial activities of Psidium guajava leaf extract", Journal of Korean Applied Science and Technology, Vol.37, No.1 pp. 56-65, (2020).
  3. Z. X. Tang, B. F. Lv, "MgO nanoparticles as antibacterial agent: preparation and activity", Brazilian Journal of Chemical Engineering, Vol.31, No.03 pp. 591-601, (2014). https://doi.org/10.1590/0104-6632.20140313s00002813
  4. J. S. Eum, "Antimicrobial activity of medicinal plants extracts against Streptococcus sobrinus KCOM 1157", Journal of Korean Applied Science and Technology, Vol.37, No.2 pp. 279-286, (2020).
  5. C. Mu, W. Zhu, "Antibiotic effects on gut microbiota, metabolism, and beyond", Applied Microbiology and Biotechnology, Vol.103, pp. 9277-9285, (2009).
  6. M. Rescigno, "Gut commensal flora: tolerance and homeostasis", F1000 Biology Reports, Vol.1, No.9 pp.1-6, (2009). https://doi.org/10.3410/B1-9
  7. J. S. Frick, I. B. Autenrieth, "The gut microflora and its variety of roles in health and disease". In: Dobrindt U., Hacker J., Svanborg C. (eds) Between Pathogenicity and Commensalism, Current Topics in Microbiology and Immunology, Vol.358, Springer, Berlin, Heidelberg, (2012).
  8. S. E. Haydel, C. M. Remenih, L. B. Williams, "Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibioticresistant bacterial pathogens", Journal of Antimicrobial Chemotherapy, Vol.61, No.2 pp. 353-361, (2007). https://doi.org/10.1093/jac/dkm468
  9. L. B. Williams, M. Holland, D. D. Eberl, "Killer clays! Natural antibacterial clay minerals", Mineralogical Society Bulletin, Vol. 139, No.139 pp. 3-8, (2004).
  10. K. H. Lee, K. T. Choi, B. S. Park, S. O. Park, "Composition of animal feed additive comprising pozzolan and use thereof", PCT/KR2015/003416 events, (2015).
  11. D. A. Jana, "A new look to an old pozzolan: Clinoptilolite-A promising pozzolan in concrete", Proceedings of the twenty-ninth conference on cement microscopy Quebec city, PQ, Canada, May 20-24, (2007).
  12. E. R. Sanders, Aseptic laboratory techniques: Plating methods. 63, e3064. Doi: 10.3791/3064. 2012.
  13. H. J. M. Bowen, "Environmental chemistry of the elements", Academic Press, London, (1979).
  14. N. Cobirzan, A. A. Balog, E. Mosonyi, "Investigation of the natural pozzolans for usage in cement industry", Procedia Technology, Vol. 19, pp. 506-511, https://doi.org/10.1016/j.protcy.2015.02.072, (2015).
  15. A. Sturz, M. Itoh, S. Smith, "Mineralogy and chemical composition of clay minerals, TAG hydrothermal mound", Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 158, pp. 277-284, (1998).
  16. K. S. Hyun, Y. J. Kim, "Characteristics of intermediate THM and bromic reaction by chlorination", Korean Society of Water Science and Technology, Vol.14, No.1 pp. 97-104, (2006).
  17. A. Abdullah, M. S. Jaafar, Y. H. Taufiq-Yap, A. Alhozaimy, A. Al- Negheimish, J. Noorzaei, "The effect of various chemical activators on pozzolanic reactivity: A review", Scientific Research and Essays, Vol.7, No.7 pp. 719-729, (2012).
  18. R. Holl, M. Kling, E. Schrol, "Metallogenesis of germanium-A review", Ore Geology Reviews, Vol.30, No.3 pp. 145-180, (2007). https://doi.org/10.1016/j.oregeorev.2005.07.034
  19. J. Dyer, "Infrared functional textiles", In N. Pan & G. Sun (Eds.), Functional Textiles for Improved Performance, Protection and Health, pp. 184-197, Philadelphia: Woodhead Publishing Limited, (2011).
  20. S. R. Tsal, M. R. Hamblln, "Biological effects and medical applications of infrared radiation", Journal of Photochemical Photobiology B, Vol.170, pp. 197-207, (2017). https://doi.org/10.1016/j.jphotobiol.2017.04.014
  21. L. Li, T. Ruan, Y. Lyu, B. Wu, "Advances in effect of germanium or germanium compounds on animals-a review", Journal of Biosciences and Medicines, Vol.5, No.7 pp. 56-73, (2017). https://doi.org/10.4236/jbm.2017.57006
  22. T. J. Chen, C. H. Lin, "Germanium: Environmental pollution and health effects", Encyclopedia of Environmental Health, pp. 927-933, DOI:10.1016/B978-0-444-52272-6. 00477-3, (2011).
  23. H. G. Sun, X. M. Lu, P. J. Gao, "The exploration of the antibacterial mechanism of $Fe^{3+}$ against bacteria", Brazilan Journal of Microbiology, Vol.42, No.1 pp. 410-414, (2011). https://doi.org/10.1590/S1517-83822011000100050
  24. S. Y. Jiang, A. Ma, S. Ramachandran, "Negative air ions and their effects on human health and air quality improvement", International Journal of Molecular Sciences, Vol.19, No.10 pp. 2966-2985, (2018). https://doi.org/10.3390/ijms19102966
  25. C. Londono, H. E. Hartnett, L. B. Williams, "Antibacterial activity of aluminumin clay from the Colombian Amazon", Environmental Science & Technology, Vol.51, No.4. pp. 2401-2408. 2017. https://doi.org/10.1021/acs.est.6b04670
  26. D. A. Mosselhy, H. Granbohm, U. Hynonen, Y. Ge, A. Palva, K. Nordstrom, S. P. Hannula, "Nanosilver-silica composite: Prolonged antibacterial effects and bacterial interaction mechanisms for wound dressings", Nanomaterials (Basel), Vol.7, No.9 pp. 261-280. 2017. https://doi.org/10.3390/nano7090261
  27. D. Dobrzynski, A. Boguszewska-Czubara, K. Sugimori, "Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland)", Environmental Geochemistry and Health, Vol.40, pp. 1355-1375, (2018). https://doi.org/10.1007/s10653-017-0061-0
  28. R. Jugdaohsingh, M. R. Calomme, K. Robinson, F. Nielsen, S. H. C. Anderson, P. D'Haese, P. Geusens, N. Loveridge, R. P. H. Thompson, J. J. Powell, "Increased longitudinal growth in rats on a silicon-depleted diet", Bone, Vol. 43, No.3 pp. 596-606, (2008). https://doi.org/10.1016/j.bone.2008.04.014
  29. Z. Chen, J. Wang, J. Li, Y. Zhu, M. Ge, "Negative air ion release and far infrared emission properties of polyethylene terephthalate/germanium composite fiber", Journal of Engineered Fibers and Fabrics. Vol.12, No.1 pp. 59-65, (2017).
  30. D. E. Camporotondi, M. L. Foglia, G. S. Alvarez, A. M. Mebert, L. E. Diaz, T. Coradin, M. F. Desimone, "Antimicrobial properties of silica modified nanoparticles", Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, 2 Formatex Research Center, pp. 283-290, (2013).