DOI QR코드

DOI QR Code

Application of Environmental DNA for Monitoring of Freshwater Fish in Korea

환경유전자의 국내 담수어류 모니터링 적용 연구

  • Kim, Jeong-Hui (EcoResearch incorporated) ;
  • Jo, Hyunbin (Fisheries Science Institute, Chonnam National University) ;
  • Chang, Min-Ho (Environment Impact Assessment Team, National Institute of Ecology) ;
  • Woo, Seung-Hyun (Environment Impact Assessment Team, National Institute of Ecology) ;
  • Cho, Youngho (Department of Research Policy, National Institute of Ecology) ;
  • Yoon, Ju-Duk (Research Center for Endangered species, National Institute of Ecology)
  • 김정희 (주식회사 에코리서치) ;
  • 조현빈 (전남대학교 수산과학연구소) ;
  • 장민호 (국립생태원 환경영향평가팀) ;
  • 우승현 (국립생태원 환경영향평가팀) ;
  • 조영호 (국립생태원 연구정책부) ;
  • 윤주덕 (국립생태원 멸종위기종복원센터)
  • Received : 2020.02.25
  • Accepted : 2020.03.17
  • Published : 2020.03.31

Abstract

In this study, to discuss on the applicability of eDNA as a new method to investigate fish diversity at streams, we applied eDNA at 4 streams (Geum River, Ji Stream, Hwangji Stream, Seomjin River), where endangered species are inhabits, with conventional survey (cast net and kick net). The average (±standard deviation) number of species investigated by eDNA were 19 species (±4.4), and it was relatively higher than average of conventional survey, 10 species (±4.8). Most of case, in this study, eDNA was more efficient than conventional survey. However, there were errors on species identification of Korean endemic species and aliied species from eDNA, and it seems the universal primer (MiFish primer set) is not suitable for them. Furthermore, some of endangered species, caught by conventional method, was not detected by eDNA. As the present universal primer is not suitable for identify the every freshwater fish species in Korea, the complementing or development of universal primer is needed, and the eDNA application after species specific marker development for detecting specific species like endangered species should be considered. In conclusion, if the manual for field survey method by eDNA is developed, we expect applicability enlargement for water ecosystem survey.

본 연구에서는 멸종위기종이 서식하는 4개 하천(금강, 지천, 황지천, 섬진강)에서 환경유전자(environmental DNA, eDNA)와 보편적 어구를 이용한 조사 방법을 적용하여 지점별 종 다양성을 확인하고, 이를 통해 eDNA의 활용을 고찰하였다. eDNA 조사를 통해서 확인된 종 수는 지점 평균(±표준편차) 19종(±4.4)이며, 이는 어구를 이용한 정량 조사의 10종(±4.8)과 비교하여 높게 나타났다. 대부분의 지점에서 eDNA 조사가 어구를 이용한 조사보다 효율이 높게 나타났다. 반면 eDNA 조사 결과 고유종 및 근연종에 대해서 동정의 오류가 확인되어, universal primer (MiFish primer set)에 대한 국내 적용의 한계를 확인하였다. 또한 멸종위기종의 서식 여부도 일부 종에 대해서 eDNA 조사 결과가 현장 조사 및 문헌과의 차이를 보였다. 현재 개발된 universal primer는 국내에서 서식하는 모든 담수종의 서식을 확인하는 데 있어서 결과의 신뢰성을 담보할 수 없기 때문에 universal primer의 보완 및 개발이 필요하며, 멸종위기종과 같은 특정종의 서식 확인을 위해서는 종특이적 마커 개발을 통한 적용이 고려되어야 한다. 마지막으로 eDNA의 현장 조사 방법에 대한 매뉴얼이 개발될 경우, 수생태계 조사에 대한 활용성이 증대될 수 있을 것이다.

Keywords

References

  1. Alam, J. 2020. Assessment of fish biodiversity in Korean rivers using the environmental DNA metabarcoding technique. Doctor degree. Pukyong National University.
  2. Andersen, K., K.L. Bird, M. Rasmussen, J. Haile, H. Breuning-Medsen, K.H. Kjaer, L. Orlando, M.T.P. Geilbert and E. Willerslev. 2011. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Molecular Ecology 21: 1966-1979. https://doi.org/10.1111/j.1365-294X.2011.05261.x
  3. Bonar, S.A., W.A. Hubert and D.W. Willis. 2009. Standard Methods for Sampling North American Freshwater Fishes. American Fisheries Society, Bethesda, Maryland.
  4. Chae, B., H. Song and J.Y. Park. 2019. A field guide to the freshwater fishes of Korea. LG Evergreen Foundation. Seoul.
  5. Dejean, T., A. Valentini, C. Miquel, P. Taberlet, E. Bellemain and C. Miaud. 2012. Improved detection of an alien invasive species through environmental DNA barcoding:the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology 49: 953-959. https://doi.org/10.1111/j.1365-2664.2012.02171.x
  6. DiBattista, J.D., D.J. Coker, T.H. Sinclair-Taylor, M. Stat, M.L. Berumen and M. Bunce. 2017. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea. Coral Reefs 36: 1245-1252. https://doi.org/10.1007/s00338-017-1618-1
  7. Doi, H., I. Katano, Y. Sakata, R. Souma, T. Kosuge, M. Nagano, K. Ikeda, K. Yano and K. Tojo. 2017. Detection of an endangered aquatic heteropteran using environmental DNA in a wetland ecosystem. Royal Society Open Science 4:170568. https://doi.org/10.1098/rsos.170568
  8. Evans, N.T., Y. Li, M.A. Renshaw, B.P. Olds, K. Deiner, C.R. Turner and M.E. Pfrender. 2017. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Canadian Journal of Fisheries and Aquatic Sciences 74: 1362-1374. https://doi.org/10.1139/cjfas-2016-0306
  9. Ficetola, G.F., C. Miaud, F. Pompanon and P. Taberlet. 2008. Species detection using environmental DNA from water samples. Biology Letters 4: 423-425. https://doi.org/10.1098/rsbl.2008.0118
  10. Itakura, H., R. Wakiya, S. Yamamoto, K. Kaifu, T. Sato and T. Minamoto. 2019. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquatic Conservation:Marine and Freshwater Ecosystems 29: 361-373. https://doi.org/10.1002/aqc.3058
  11. Jerde, C.L., A.R. Mahon, W.L. Chadderton and D.M. Lodge. 2011. "Sight-unseen" detection of rare aquatic species using environmental DNA. Conservation Letters 4: 150-157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
  12. Keskin, E., E.M. Unal and H.H. Atar. 2016. Detection of rare and invasive freshwater fish species using eDNA pyrosequencing:Lake Iznik ichthyofauna revised. Biochemical Systematics and Ecology 67: 29-36. https://doi.org/10.1016/j.bse.2016.05.020
  13. Kim, I.S. and J.Y. Park. 2002. Freshwater fishes of Korea. Kyo-Hak Publishing Co, Seoul.
  14. Kim, I.S., M.K. Oh and K. Hosoya. 2005. A new species of cyprinid fish, Zacco koreanus with redescription of Z. temminckii (Cyprinidae) from Korea. Korean Journal of Ichthyology 17: 1-7.
  15. Laramie, M.B., D.S. Pilliod, C.S. Goldberg and K.M. Strickler. 2015. Environmental DNA sampling protocol-filtering water to capture DNA from aquatic organisms (No. 2-A13). US Geological Survey.
  16. Minamoto, T., H. Yamanaka, T. Takahara, M.N. Honjo and Z.I. Kawabata. 2012. Surveillance of fish species composition using environmental DNA. Limnology 13: 193-197. https://doi.org/10.1007/s10201-011-0362-4
  17. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh and W. lwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2: 150088. https://doi.org/10.1098/rsos.150088
  18. Nakagawa, H., S. Yamamoto, Y. Sato, T. Sado, T. Minamoto and M. Miya. 2018. Comparing local-and regional-scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods. Freshwater Biology 63: 569-580. https://doi.org/10.1111/fwb.13094
  19. NIE. 2019. Specific monitoring of distribution of Gobiobotia naktongensis (endangered species level 1) in Geum River watershed. National Institute of Ecology. Yeongyang.
  20. NIER. 2016. Biomonitering survey and assessment manual. National institute of environmental research. Incheon.
  21. Ogram, A., G.S. Sayler and T. Barkay. 1987. The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods 7: 57-66. https://doi.org/10.1016/0167-7012(87)90025-X
  22. Piggott, M.P. 2016. Evaluating the effects of laboratory protocols on eDNA detection probability for an endangered freshwater fish. Ecology and Evolution 6: 2739-2750. https://doi.org/10.1002/ece3.2083
  23. Rees, H.C., B.C. Maddison, D.J. Middleditch, J.R. Patmore and K.C. Gough. 2014. The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51:1450-1459. https://doi.org/10.1111/1365-2664.12306
  24. Riaz, T., W. Shehzad, A. Viari, F. Pompanon, P. Taberlet and E. Coissac. 2011. ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research 39: e145-e145. https://doi.org/10.1093/nar/gkr732
  25. Sassoubre, L.M., K.M. Yamahara, L.D. Gardner, B.A. Block and A.B. Boehm. 2016. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science & Technology 50: 10456-10464. https://doi.org/10.1021/acs.est.6b03114
  26. Shaw, J.L., L.J. Clarke, S.D. Wedderburn, T.C. Barnes, L.S. Weyrich and A. Cooper. 2016. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation 197:131-138. https://doi.org/10.1016/j.biocon.2016.03.010
  27. Taberlet, P., E. Coissac, M. Hajibabaei and L.H. Rieseberg. 2012. Environmental DNA. Molecular Ecology 21: 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x
  28. Takahara, T., T. Minamoto and H. Doi. 2013. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PloS One 8: e56584. https://doi.org/10.1371/journal.pone.0056584
  29. Takeuchi, A., S. Watanabe, S. Yamamoto, M.J. Miller, T. Fukuba, T. Miwa, T. Okino, T. Minamoto and K. Tsukamoto. 2019. First use of oceanic environmental DNA to study the spawning ecology of the Japanese eel. Anguilla japonica. Marine Ecology Progress Series 609: 187-196. https://doi.org/10.3354/meps12828
  30. Thomsen, P.F. and E. Willerslev. 2015. Environmental DNA -An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 187: 4-18 https://doi.org/10.1016/j.biocon.2014.11.019
  31. Thomsen, P.F., J. Kielgast, L.L. Iversen, P.R. Moller, M. Rasmussen and E. Willerslev. 2012a. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7: e41732. https://doi.org/10.1371/journal.pone.0041732
  32. Thomsen, P.F., J. Kielgast, L.L. Iversen, C. Wiuf, M. Rasmussen, M.T. Gilbert, L. Orlando and E. Willerslev. 2012b. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21: 2565-2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x
  33. Yamamoto, S., K. Minami, K. Fukaya, K. Takahashi, H. Sawada, H. Murakami, S. Tsuji, H. Hashizume, S. Kubonaga, T. Horiuchi, M. Hongo, J. Nishida, Y. Okugawa, A. Fujiwara, M. Fukuda, S. Hidaka, K.W. Suzuki, M. Miya, H. Araki, H. Yamanaka, A. Maruyama, K. Miyashita, R. Masuda, T. Minamoto and M. Kondoh. 2016. Environmental DNA as a ‘snapshot’ of fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS One 11: e0149786. https://doi.org/10.1371/journal.pone.0149786
  34. Yoon, J.D., J.H. Kim, H.J. Lee and M.H. Jang. 2015. Use of the cast net for monitoring fish status in reservoirs distributed in the Korean peninsula. Journal of Ecology and Environment 38: 383-388. https://doi.org/10.5141/ecoenv.2015.040