DOI QR코드

DOI QR Code

Stress Evaluation to Heavy Metal Exposure using Molecular Marker in Chironomus riparius

분자지표 유전자 발현을 통한 Chironomus riparius 중금속 노출 스트레스 평가

  • Kim, Won-Seok (Department of Ocean Integrated Science, Chonnam National University) ;
  • Park, Kiyun (Fisheries Science Institute, Chonnam National University) ;
  • Kwak, Ihn-Sil (Department of Ocean Integrated Science, Chonnam National University)
  • Received : 2020.05.14
  • Accepted : 2020.06.09
  • Published : 2020.06.30

Abstract

Heavy metals are common pollutants in the freshwater environment and have toxicological effect in habitat organisms. The heavy metals highly accumulated in sediment and organism, and observed various physiological responses. In this study, we investigated the molecular response to heavy metal toxicity (Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) through expression of heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450 (CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP). HSPs showed up-regulation in Cu and Zn exposures. Furthermore, HSPs expression in treated groups tended to be higher than the control group. The tendency of CYP450 and GST mRNA expression was higher for Cr and Cu than for other exposure group. The expression of SP gene was low at Al exposure and other group were measured to be similar to control. These results suggest that heavy metal toxicity in freshwater ecosystem may affect physiological and molecular process. Also, the comprehensive gene expression in the aquatic midge Chironomus riparius give useful information to potential molecular biomarkers for assessing heavy metal toxicity.

중금속은 다양한 경로를 통해 환경 중 배출되어 서식 생물에 노출되며 체내 다양한 생리학적 불균형을 유도한다. 본 연구에서는 수서생물지표종으로 이용되는 깔따구(Chironomus riparius)를 이용하여 야외 중금속(Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) 농도 노출에 따른 다양한 분자발현 반응과 상관성을 분석하였다. 생물 체내 분자 반응을 관찰하기 위해 heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450(CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP)를 이용하였다. 그 결과, 스트레스 분자마커로 이용되는 HSPs 유전자들은 중금속 노출된 개체들에서 대조군보다 높은 경향을 보였으며 Cu 노출 시 가장 높은 발현을 나타냈다. 해독에 관여하는 CYP450과 GST 유전자 발현 결과, Cr과 Cu에서는 다른 노출군에 비해 높은 발현 경향을 나타냈다. SP 유전자 발현 결과 Al을 제외한 모든 노출군이 대조군과 유사한 발현 패턴을 보였다. 이와 같은 연구 결과는 실내에서 환경 중 존재하는 실제 농도를 반영한 독성실험을 통해 노출물질과 농도에 따라 특이적으로 발현하는 분자마커 패턴을 보고하였다. 또한, 수생태계로 유입되는 중금속이 하천에 서식하는 생물에 주는 유해 영향에 대한 정보와 분자 지표 유전자들의 현장 적용 가능성을 보여준다.

Keywords

References

  1. Anderson, R.L. 1980. Chironomidae toxicity tests biological background and procedures. In Aquatic invertebrate bioassays. ASTM International.
  2. Arambourou, H., R. Planello, L. Llorente, I. Fuertes, C. Barata, N. Delorme, P. Noury, O, Herrero, A. Villeneuve and C. Bonnineau. 2019. Chironomus riparius exposure to field-collected contaminated sediments: from subcellular effect to whole-organism response. Science of the Total Environment 671: 874-882. https://doi.org/10.1016/j.scitotenv.2019.03.384
  3. Arimoro, F.O., Y.I. Auta, O.N. Odume, U.N. Keke and A.Z. Mohammed. 2018. Mouthpart deformities in Chironomidae (Diptera) as bioindicators of heavy metals pollution in Shiroro Lake, Niger State, Nigeria. Ecotoxicology and Environmental Safety 149: 96-100. https://doi.org/10.1016/j.ecoenv.2017.10.074
  4. Barrett, A.J., N.D. Rawlings and J.F. Woessner. 2003. Handbook of proteolytic enzymes. Academic Press, New York.
  5. Creaney, J., G.L. Wijffels, J.L. Sexton, R.M. Sandeman, T.W. Spithill and J.C. Parsons. 1995. Fasciola hepatica: localization of glutathione S-transferase isoenzymes in adult and juvenile liver fluke. Experimental Parasitology 81: 106-116. https://doi.org/10.1006/expr.1995.1098
  6. Danielson, P.B. 2002. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Current Drug Metabolism 3: 561-597. https://doi.org/10.2174/1389200023337054
  7. Elendt, B.P. 1990. Selenium deficiency in Crustacea; an ultrastructural approach to antennal damage in aphnia magna Straus. Protoplasma 154: 25-33. https://doi.org/10.1007/BF01349532
  8. Enayati, A.A., H. Ranson and J. Hemingway. 2005. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14: 3-8. https://doi.org/10.1111/j.1365-2583.2004.00529.x
  9. Feyereosem, R. 1999. Insect P450 enzymes. Annual Review of Entomology 44: 507-533. https://doi.org/10.1146/annurev.ento.44.1.507
  10. Garcia Sampaio, F., C. de Lima Boijink, E. Tie Oba, L. Romagueira Bichara dos Santos, A. Lucia Kalinin and F. Tadeu Rantin. 2008. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology Part C 147: 43-51. https://doi.org/10.1016/j.cbpc.2007.07.009
  11. Hall, J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53: 1-11. https://doi.org/10.1093/jexbot/53.370.0
  12. Ireland, H.E., S.J. Harding, G.A. Bonwick, M. Jones, C.J. Smith, and J.H. Williams. 2004. Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9: 139-155. https://doi.org/10.1080/13547500410001732610
  13. Kim, W.S., C. Hong, K. Park and I.S. Kwak. 2019. Ecotoxicological response of Cd and Zn exposure to a field dominant species, Chironomus plumosus. Korean Journal of Ecology and Environment 52: 266-273. https://doi.org/10.11614/KSL.2019.52.3.266
  14. Kim, W.S., K. Park, J.K. Kim and I.S. Kwak. 2016. Expression of the heat shock protein 70 gene and external developmental traits of two Bivalvia species, Crassostrea gigas and Mytilus galloprovincialis, under aquaculture environments. Korean Journal of Ecology and Environment 49: 22-30. https://doi.org/10.11614/KSL.2016.49.1.022
  15. Kim, W.S., R. Kim, K. Park, N. Chamilani and I.S. Kwak. 2015. The molecular biomarker genes expressions of rearing species Chironomus riparious and field species Chironomus plumosus exposure to heavy metals. Korean Journal of Ecology and Environment 48: 86-94. https://doi.org/10.11614/KSL.2015.48.2.086
  16. Kostaropoulos, I., D. Kalmanti, B. Theodoropoulou and N.S. Loumbourdis. 2005. Effects of exposure to a mixture of cadmium and chromium on detoxification enzyme (GST, P450-MO) activities in the frog Rana ridibunda. Ecotoxicology 14: 439-447. https://doi.org/10.1007/s10646-004-1349-2
  17. Kregel, K.C. 2002. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology 92: 2177-2186. https://doi.org/10.1152/japplphysiol.01267.2001
  18. Lin, J.H. and A.Y. Lu. 1998. Inhibition and induction of cytochrome P450 and the clinical implications. Clinical Pharmacokinetics 35: 361-390. https://doi.org/10.2165/00003088-199835050-00003
  19. Martin-Folgar, R. and J.L. Martinez-Guitarte. 2017. Cadmium alters the expression of small heat shock protein genes in the aquatic midge Chironomus riparius. Chemosphere 169: 485-492. https://doi.org/10.1016/j.chemosphere.2016.11.067
  20. Martin-Folgar, R. and J.L. Martinez-Guitarte. 2019. Effects of single and mixture exposure of cadmium and copper in apoptosis and immune related genes at transcriptional level on the midge Chironomus riparius Meigen (Diptera, Chironomidae). Science of the Total Environment 677: 590-598. https://doi.org/10.1016/j.scitotenv.2019.04.364
  21. Martinez, E.A., B.C. Moore, J. Schaumloffel and N. Dasgupta. 2003. Morphological abnormalities in Chironomus tentans exposed to cadmium and copper-spiked sediments. Ecotoxicology and Environmental Safety 55: 204-212. https://doi.org/10.1016/S0147-6513(02)00136-7
  22. Michailova, P., J. Ilkova and K.N. White. 2003. Functional and structural rearrangements of salivary gland polytene chromosomes of Chironomus riparius Mg. (Diptera, Chironomidae) in response to freshly neutralized aluminium. Environmental Pollution 123: 193-207. https://doi.org/10.1016/S0269-7491(02)00405-0
  23. Mohamed, A.A.R., W. El-Houseiny, A.E. El-Murr, L.L. Ebraheim, A.I. Ahmed and Y.M.A. El-Hakim. 2020. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicology and Environmental Safety 188: 109890. https://doi.org/10.1016/j.ecoenv.2019.109890
  24. Park, K. and I.S. Kwak. 2008. Characterization of heat shock protein 40 and 90 in Chironomus riparius larvae: effects of di (2-ethylhexyl)phthalate exposure on gene expressions and mouthpart deformities. Chemosphere 74: 89-95. https://doi.org/10.1016/j.chemosphere.2008.09.041
  25. Park, K. and I.S. Kwak. 2011. Ribosomal protein S3 gene expression of Chironomus riparius under cadmium, copper and lead stress. Journal of Toxicology and Environmental Health Science 3: 347-355.
  26. Park, K. and I.S. Kwak. 2014. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development. Science of the Total Environment 470: 1003-1011. https://doi.org/10.1016/j.scitotenv.2013.10.052
  27. Park, K., H.W. Bang, J. Park and I.S. Kwak. 2009. Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus riparius larvae. Chemosphere 77: 359-367. https://doi.org/10.1016/j.chemosphere.2009.07.019
  28. Park, K., N. Chamilani, W.S. Kim, T.S. Kwak and I.S. Kwak. 2016. Changes of exoskeleton surface roughness and expression of crusical participation genes for chitin formation and digestion in the mud crab (Macrophthalmus japonicus) following the antifouling biocide irgarol. Ecotoxicology and Environmental Safety 132: 186-195. https://doi.org/10.1016/j.ecoenv.2016.06.005
  29. Park, K., T.S. Kwak, W.S. Kim and I.S. Kwak. 2018. Changes in exoskeleton surface roughness and expression of chitinase genes in mud crab Macrophthalmus japonicus following heavy metal differences of estuary. Marine Pollution Bulletin 138: 11-18. https://doi.org/10.1016/j.marpolbul.2018.11.016
  30. Rand, G.M., P.G. Wells and L.S. McCarty. 1995. Introduction to aquatic toxicology. Fundamentals of aquatic toxicology effects, environmental fate, and risk assessment. Taylor and Francis Publishers, North Palm Beach, Florida, USA, 3-67.
  31. Rhoads, M.L. and R.H. Fetterer. 1997. Extracellular matrix: a tool for defining the extracorporeal function of parasite proteases. Parasitology Today 13: 119-122. https://doi.org/10.1016/S0169-4758(96)40011-4
  32. Scott, J.G. 1999. Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology 29: 757-777. https://doi.org/10.1016/S0965-1748(99)00038-7
  33. Terra, W.R., C. Ferreira, B.P. Jordao and R.J. Dillon. 1996. Digestive enzymes. In; Biology of the Insect Midgut, Lehane, MJ and Billingsley, PF.