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A FIXED POINT APPROACH TO THE STABILITY OF

THE ADDITIVE-CUBIC FUNCTIONAL EQUATIONS

Sun-Sook Jin and Yang-Hi Lee∗

Abstract. In this paper, we investigate the stability of the
additive-cubic functional equations

f(x+ky)+f(x−ky)−k2f(x+y)−k2f(x−y)+(k2−1)f(x)

− (k2−1)f(−x) = 0,

f(x+ky)−f(ky−x)−k2f(x+y)+k2f(y−x)+2(k2−1)f(x)=0,

f(kx+y)+f(kx−y)−kf(x+y)−kf(x−y)−2f(kx)+2kf(x)=0

by using the fixed point theory in the sense of L. Cădariu and V.
Radu.

1. Introduction

Throughout this paper, let V and W be real vector spaces, Y a real
Banach space, and k a fixed nonzero real number such that |k| 6= 1. For
a given mapping f : V →W , we use the following abbreviations

fo(x) :=
f(x)− f(−x)

2
,

Af(x, y) :=f(x+ y)− f(x)− f(y),

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

D1f(x, y) :=f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y)

+ (k2 − 1)f(x)− (k2 − 1)f(−x),

D2f(x, y) :=f(x+ ky)− f(ky − x)− k2f(x+ y) + k2f(y − x)

+ 2(k2 − 1)f(x),
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D3f(x, y) :=f(kx+ y) + f(kx− y)− kf(x+ y)− kf(x− y)

− 2f(kx) + 2kf(x)

for all x, y ∈ V .

In 1940, the problem for the stability of group homomorphism was
first raised by S. M. Ulam [18]. In the next year, D. H. Hyers [8] gave
a partial solution to Ulam’s question for the case of additive mappings.
Hyers’ result has greatly influenced the study of the stability problem of
the functional equation. His result was generalized by Th. M. Rassias
[16] and Găvruta [7].

Each functional equation Af(x, y) = 0 and Cf(x, y) = 0 are called
an additive functional equation and a cubic functional equation, re-
spectively. Every solution of functional equations Af(x, y) = 0 and
Cf(x, y) = 0 are called an additive mapping and a cubic mapping, re-
spectively. If a mapping can be expressed by sum of a cubic mapping
and an additive mapping, then we call the mapping an additive-cubic
mapping. A functional equation is called an additive-cubic functional
equation provided that each solution of that equation is an additive-
cubic mapping and every additive-cubic mapping is a solution of that
equation.

M. Arunkumar et al. [1, 2] proved the stability of the additive-
cubic functional equation D2f(x, y) = 0 when k = 2 and S.-S. Jin et
al. [12] proved the stability of the additive-cubic functional equation
D2f(x, y) = 0. M. E. Gordji et al. [?], A. Najati et al.[14], and Z. Wang
et al. [19] proved the stability of the additive-cubic functional equation
D3f(x, y) = 0 when k = 2, and T. Z. Xu et al.[20, 22, 23, 21] proved the
stability of the additive-cubic functional equation D3f(x, y) = 0 when
k is an integer. Many mathematicians investigated the stability of the
other types of additive-cubic functional equations [6, 9, 15, 17]. They
proved the stability of the additive-cubic functional equations by han-
dling the additive part and the cubic part of the given function f , respec-
tively. In this paper, instead of splitting the given function f : V → Y
into two parts, we will prove the stability of the functional equations
D1f(x, y) = 0, D2f(x, y) = 0, D3f(x, y) = 0 by using the fixed point
theory in the sense of Cădariu and Radu [3, 4] (See also [10, 11, 13]).
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2. Main results

We recall the following Margolis and Diaz’s fixed point theorem to
prove the main theorem.

Theorem 2.1. ([5]) Suppose that a complete generalized metric
space (X, d), which means that the metric d may assume infinite values,
and a strictly contractive mapping J : X → X with the Lipschitz con-
stant 0 < L < 1 are given. Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;

(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};

(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Lemma 2.2. Let m ∈ {1, 2, 3} and f : V →W with f(0) = 0. Then
the equality

f(4x)−10f(2x) + 16f(x) = Emf(x)(1)
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holds for all x ∈ V , where Emf : V →W is given by

E1f(x) :=
1

k4 − k2
(
(4k2 − 3)D1fo(x, x)− 2k2D1fo(2x, x) + 2k2D1fo(x, 2x)

− 2D1fo((k + 1)x, x) + 2D1fo((k − 1)x, x)− k2D1fo(2x, 2x)

+D1fo(x, 3x)−D1fo((2k + 1)x, x) +D1fo((2k − 1)x, x)
)

− 1

2(k2 − 1)

(
D1f(4x, 0)− 10D1f(2x, 0) + 16D1f(x, 0)

)
,

E2f(x) :=
1

k4 − k2
(
(4k2 − 3)D2fo(x, x)− 2k2D2fo(2x, x) + 2k2D2fo(x, 2x)

− 2D2fo((k + 1)x, x) + 2D2fo((k − 1)x, x)− k2D2fo(2x, 2x)

+D2fo(x, 3x)−D2fo((2k + 1)x, x) +D2fo((2k − 1)x, x)
)

+
1

2(k2 − 1)

(
D2f(4x, 0)− 10D2f(2x, 0) + 16D2f(x, 0)

)
,

E3f(x) :=
1

k − k3
(
8D3fo(x/2, kx/2)− 8kD3fo(x/2, (2k + 1)x/2)

+ 8kD3fo(x/2, (2k − 1)x/2)− 8D3fo(x/2, 3kx/2)

+ (1− 8k2)D3fo(x, x)−D3fo(x, kx) + 2D3fo(x, (k + 1)x)

+ 2D3fo(x, (k − 1)x) + (k + 1)D3fo(x, (2k + 1)x)

− (k − 1)D3fo(x, (2k − 1)x) +D3fo(x, 3kx)− 2D3fo(2x, x)

+ k2D3fo(2x, 2x)− 2D3fo(2x, kx)−D3fo(2x, 2kx)−D3fo(3x, x)
)

+
1

2− 2k

(
D3f(0, 4x)− 10D3f(0, 2x) + 16D3f(0, x)

)
for all x ∈ V .

Now we can prove some stability results of the functional equation
DmF (x, y) = 0 (m = 1, 2, 3) by using the fixed point theory.

Theorem 2.3. Let m be a fixed integer such that m ∈ {1, 2, 3}
and let f : V → Y be a mapping for which there exists a mapping
ϕ : V 2 → [0,∞) such that the inequality

(2) ‖Dmf(x, y)‖ ≤ ϕ(x, y)

holds for all x, y ∈ V and let f(0) = 0. If there exists a constant
0 < L < 1 such that ϕ has the property

(3) ϕ(2x, 2y) ≤ (
√

41− 5)Lϕ(x, y)

for all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying
the functional equation DmF (x, y) = 0 and the inequality

(4) ‖f(x)− F (x)‖ ≤ Φm(x)

16(1− L)
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for all x ∈ V , where ϕe : V 2 → [0,∞) and Φm are defined by

ϕe(x, y) :=
ϕ(x, y) + ϕ(−x,−y)

2
,

Φ1(x) :=
1

|k4 − k2|
(
|4k2 − 3|ϕe(x, x) + 2k2ϕe(2x, x) + 2k2ϕe(x, 2x)

+ 2ϕe((k + 1)x, x) + 2ϕe((k − 1)x, x) + k2ϕe(2x, 2x)

+ ϕe(x, 3x) + ϕe((2k + 1)x, x) + ϕe((2k − 1)x, x)
)

+
1

|k2 − 1|
(
ϕe(4x, 0) + 5k2ϕe(2x, 0) + 8k2ϕe(x, 0)

)
,

Φ2(x) :=
1

|k4 − k2|
(
|4k2 − 3|ϕe(x, x) + 2k2ϕe(2x, x) + 2k2ϕe(x, 2x)

+ 2ϕe((k + 1)x, x) + 2ϕe((k − 1)x, x) + k2ϕe(2x, 2x)

+ ϕe(x, 3x) + ϕe((2k + 1)x, x) + ϕe((2k − 1)x, x)
)

+
1

|k2 − 1|
(
ϕe(4x, 0) + 5k2ϕe(2x, 0) + 8k2ϕe(x, 0)

)
,

Φ3(x) :=
1

|k3 − k|
(
8ϕe(x/2, kx/2) + 8kϕe(x/2, (2k + 1)x/2)

+ 8kϕe(x/2, (2k − 1)x/2) + 8ϕe(x/2, 3kx/2) + |8k2 − 1|ϕe(x, x)

+ ϕe(x, kx) + 2ϕe(x, (k + 1)x) + 2ϕe(x, (k − 1)x)

+ |k + 1|ϕe(x, (2k + 1)x) + |k − 1|ϕe(x, (2k − 1)x) + ϕe(x, 3kx)

+ 2ϕe(2x, x) + k2ϕe(2x, 2x) + 2ϕe(2x, kx) + ϕe(2x, 2kx)

+ ϕe(3x, x)
)

+
1

|k − 1|
(
ϕe(0, 4x) + 10ϕe(0, 2x) + 16ϕe(0, x)

)
.

In particular, F is represented by

(5) F (x) = lim
n→∞

n∑
i=0

nCi
(−1)n−i10i

16n
f(22n−ix)

for all x ∈ V .

Proof. Let S be the set of all functions g : V → Y with g(0) = 0.
We introduce a generalized metric on S by

d(g, h) = inf
{
K ∈ R+

∣∣ ‖g(x)− h(x)‖ ≤ KΦm(x) for all x ∈ V
}
.
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It is easy to show that (S, d) is a generalized complete metric space.
Now we consider the mapping J : S → S, which is defined by

Jg(x) := −g(4x)

16
+

10g(2x)

16

for all x ∈ V. Notice that the equality

Jng(x) =
n∑
i=0

nCi
(−1)n−i(10)i

16n
g(22n−ix)

holds for all n ∈ N and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an
arbitrary constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ ≤ 1

16
‖g(4x)− h(4x)‖+

10

16
‖g(2x)− h(2x)‖

≤ K(
1

16
Φm(4x) +

10

16
Φm(2x))

≤ K(
(
√

41− 5)2

16
L2Φm(x) +

10(
√

41− 5)

16
LΦm(x))

for all x ∈ V , which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Using (1) we obtain that

‖f(x)− Jf(x)‖ =

∥∥∥∥f(4x)− 10f(2x) + 16f(x)

16

∥∥∥∥ =

∥∥∥∥Emf(x)

16

∥∥∥∥ ≤ Φm(x)

16

for all x ∈ V . It means that d(f, Jf) ≤ 1
16 < ∞ by the definition of d.

Therefore according to Theorem 2.1, the sequence {Jnf} converges to
the unique fixed point F : V → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by (5) for all x ∈ V . Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ 1

16(1− L)
,



A fixed point approach to the stability of the AC functional equations 455

which implies (4). By the definition of F , together with (2) and (3), we
have

‖DmF (x, y)‖ = lim
n→∞

‖DmJ
nf(x, y)‖

= lim
n→∞

∥∥∥ n∑
i=0

nCi
(−1)n−i(10)i

16n
Dmf(22n−ix, 22n−iy)

∥∥∥
≤ lim
n→∞

n∑
i=0

nCi
10i

16n
ϕ(22n−ix, 22n−iy)

≤ lim
n→∞

n∑
i=0

nCi
(
√

41− 5)n−i10i

16n
Ln−iϕ(2nx, 2ny)

≤ lim
n→∞

(
√

41 + 5)n

16n
ϕ(2nx, 2ny)

≤ lim
n→∞

(
√

41 + 5)n(
√

41− 5)n

16n
Lnϕ(x, y)

≤ lim
n→∞

Lnϕ(x, y) = 0

for all x, y ∈ V i.e., F is a solution of the functional equation
DmF (x, y) = 0. Notice that if F is a solution of the functional equation

DmF (x, y) = 0, then the equality F (x)− JF (x) = EmF (x)
16 implies that

F is a fixed point of J . �

We continue our investigation with the next result.

Theorem 2.4. Let m be a fixed integer such that m ∈ {1, 2, 3}
and let f : V → Y be a mapping for which there exists a mapping
ϕ : V 2 → [0,∞) such that the inequality (2) holds for all x, y ∈ V and
let f(0) = 0. If there exists a constant 0 < L < 1 such that ϕ has the
property

(6) Lϕ(2x, 2y) ≥ 16√
41− 5

ϕ(x, y)

for all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying
the functional equation DmF (x, y) = 0 and the inequality

(7) ‖f(x)− F (x)‖ ≤ (66− 10
√

41)L2

256(1− L)
Φm(x)
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for all x ∈ V . In particular, F is represented by

(8) F (x) = lim
n→∞

n∑
i=0

nCi10i(−16)n−if

(
x

22n−i

)
for all x ∈ V .

Proof. Let the set (S, d) be as in the proof of Theorem 2.3. Now we
consider the mapping J : S → S defined by

Jg(x) := 10g

(
x

2

)
− 16g

(
x

4

)
for all x ∈ V . Notice that the equality

Jng(x) =

n∑
i=0

nCi10i(−16)n−ig

(
x

22n−i

)
holds for all n ∈ N and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an
arbitrary constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ ≤10

∥∥∥∥g(x2
)
− h
(
x

2

)∥∥∥∥+ 16

∥∥∥∥g(x4
)
− h
(
x

4

)∥∥∥∥
≤16KΦm

(
x

4

)
+ 10KΦm

(
x

2

)
≤L2 (

√
41− 5)2

16
KΦm(x) + 10

√
41− 5

16
LKΦm(x)

≤LKΦm(x)

for all x ∈ V , which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Moreover, by (1) and (2), we see that

‖f(x)− Jf(x)‖ ≤ Φm

(
x

4

)
≤ (
√

41− 5)2L2

162 Φm(x)

for all x ∈ V . It means that d(f, Jf) ≤ (66−10
√

41)L2

256 < ∞ by the
definition of d. Therefore according to Theorem 2.3, the sequence {Jnf}
converges to the unique fixed point F : V → Y of J in the set T = {g ∈
S|d(f, g) <∞}, which is represented by (8) for all x ∈ V . Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ (66− 10

√
41)L2

256(1− L)
,
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which implies (7). By the definition of F , together with (2) and (8), we
have

‖DmF (x, y)‖ = lim
n→∞

∥∥∥ n∑
i=0

nCi10i(−16)n−iDmf

(
x

22n−i ,
y

22n−i

)∥∥∥
≤ lim
n→∞

n∑
i=0

nCi10i16n−iϕ

(
x

22n−i ,
y

22n−i

)

≤ lim
n→∞

n∑
i=0

nCi10i(
√

41− 5)n−iLn−iϕ

(
x

2n
,
y

2n

)
≤ lim
n→∞

(
√

41 + 5)nϕ

(
x

2n
,
y

2n

)
≤ lim
n→∞

(
√

41 + 5)n
(
√

41− 5)nLn

16n
ϕ(x, y)

≤ lim
n→∞

Lnϕ(x, y) = 0

for all x, y ∈ V i.e., F is a solution of the functional equation
DmF (x, y) = 0. Notice that if F is a solution of the functional equation
DmF (x, y) = 0, then the equality F (x)−JF (x) = EmF

(
x
4

)
implies that

F is a fixed point of J . �

Since f is an additive-cubic mapping if Dmf(x, y) = 0, and f−Jf = 0
if f is an additive-cubic mapping, we obtain the following corollaries from
Theorem 2.3 and Theorem 2.4.

Corollary 2.5. Let f : V → Y be a mapping for which there exists
a mapping ϕ : V 2 → [0,∞) such that the inequality (2) holds for all
x, y ∈ V and let f(0) = 0. If there exists a constant 0 < L < 1 such
that ϕ has the property (3) for all x, y ∈ V , then there exists a unique
additive-cubic mapping F : V → Y satisfying the inequality (4) for all
x ∈ V .

Corollary 2.6. Let f : V → Y be a mapping for which there exists
a mapping ϕ : V 2 → [0,∞) such that the inequality (2) holds for all
x, y ∈ V and let f(0) = 0. If there exists a constant 0 < L < 1 such
that ϕ has the property (6) for all x, y ∈ V , then there exists a unique
additive-cubic mapping F : V → Y satisfying the inequality (7) for all
x ∈ V .
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Corollary 2.7. Let X be a normed space and p ∈ (0, log2(
√

41−5)∪
(4− log2(

√
41− 5),∞). If a function f : X → Y satisfies the inequality

‖Dmf(x, y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
for all x, y ∈ X and for some θ ≥ 0, then there exists a unique additive
and cubic mapping F : X → Y such that

‖f(x)− F (x)‖ ≤


(
√

41−5)Φmθ‖x‖p
16(
√

41−5−2p)
when 2p <

√
41− 5,

(
√

41−5)Φmθ‖x‖p
(
√

41−5)4p−16·2p when 2p > 16√
41−5

for all x ∈ X, where Φm are defined by

Φ1 =Φ2 :=
8k4 + 12k2 + 1 + (5k4 + 6k2)2p + 3p + k24p

|k4 − k2|

+
4(|k|+ 1)p + 2(2|k|+ 1)p)

|k4 − k2|

Φ3 :=
1

2p|k3 − k|
× (16|k|+ 1 + 8|k|p + 8|k||2k + 1|p + 8|k||k − 1|p

+ 8 · |3k|p + 2p(2|8k2 − 1|+ 16k2 + |k + 1|+ |k − 1|+ 9 + 3|k|p

+ 2|k + 1|p + 2|k − 1|p + |k + 1||2k + 1|p

+ |k − 1||2k − 1|p + |3k|p + |2k|p + 3p + (6 + 12k2)2p + k24p)

Proof. If we put

ϕ(x, y) := θ
(
‖x‖p + ‖y‖p

)
for all x, y ∈ X and

L :=

{
2p−log2(

√
41−5) if p < log2(

√
41− 5),

24−log2(
√

41−5)−p if p > 4− log2(
√

41− 5)

then our assertions follow from Theorems 2.3 and 2.4. �
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