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THE NORMING SET OF A POLYNOMIAL IN P(2l2∞)

Sung Guen Kim

Abstract. An element x ∈ E is called a norming point of P ∈
P(nE) if ‖x‖ = 1 and |P (x)| = ‖P‖. For P ∈ P(nE), we define

Norm(P ) = {x ∈ E : x is a norming point of P}.
Norm(P ) is called the norming set of P . We classify Norm(P ) for
P ∈ P(2l2∞).

1. Introduction

Let n ∈ N, n ≥ 2. We write SE for the unit sphere of a real Ba-
nach space E. A mapping P : E → R is a continuous n-homogeneous
polynomial if there exists a continuous n-linear form L on the product
E×· · ·×E such that P (x) = L(x, . . . , x) for every x ∈ E. We denote by
P(nE) the Banach space of all continuous n-homogeneous polynomials
from E into R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|. For more
details about the theory of multilinear mappings and polynomials on a
Banach space, we refer to [5].

An element x ∈ E is called a norming point of P ∈ P(nE) if ‖x‖ = 1
and |P (x)| = ‖P‖. For P ∈ P(nE), we define

Norm(P ) = {x ∈ E : x is a norming point of P}.

Norm(P ) is called the norming set of P . Notice that x ∈ Norm(P ) if
and only if −x ∈ Norm(P ). Indeed, if x ∈ Norm(P ), then

|P (−x)| = |(−1)nP (x)| = |P (x)| = ‖P‖,

which shows that−x ∈ Norm(P ). If−x ∈ Norm(P ), then x = −(−x) ∈
Norm(P ). The following examples show that Norm(P ) = ∅ or a finite
set or an infinite set.
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Examples. (a) Let

P ((xi)i∈N) =
∞∑
i=1

1

2i
x2i ∈ P(2c0).

Then, Norm(P ) = ∅.
(b) Let

P ((xi)i∈N) = x21 −
∞∑
i=2

1

2i
x2i ∈ P(2c0).

Then,

Norm(P ) = {±e1}.

(c) Let

P ((xi)i∈N) = x21 ∈ P(2c0).

Then,

Norm(P ) = {((±1, x2, x3, . . .) ∈ c0 : |xj | ≤ 1 for j = 2, 3, . . .}.

If Norm(P ) 6= ∅, P ∈ P(nE) is called a norm attaining polynomial.(See
[3])

Let us introduce a brief history of norm attaining multilinear forms
and polynomials on Banach spaces. In 1961 Bishop and Phelps [2] initi-
ated and showed that the set of norm attaining functionals on a Banach
space is dense in the dual space. Shortly after, attention was paid to pos-
sible extensions of this result to more general settings, specially bounded
linear operators between Banach spaces. The problem of denseness of
norm attaining functions has moved to other types of mappings like
multilinear forms or polynomials. The first result about norm attaining
multilinear forms appeared in a joint work of Aron, Finet and Werner
[1], where they showed that the Radon-Nikodym property is sufficient
for the denseness of norm attaining multilinear forms. Choi and Kim
[3] showed that the Radon-Nikodym property is also sufficient for the
denseness of norm attaining polynomials. Jimenez-Sevilla and Paya [6]
studied the denseness of norm attaining multilinear forms and polyno-
mials on preduals of Lorentz sequence spaces.

It seems to be natural and interesting to study about Norm(P ) for
P ∈ P(nE). For m ∈ N, let lm∞ := Rm with the supremum norm. Notice
that for every P ∈ P(nlm∞), Norm(P ) 6= ∅ since Slm∞ is compact.

In this paper, we classify Norm(P ) for every P ∈ P(2l2∞).
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2. Results

Lemma 2.1. Let P (x, y) = ax2 + by2 + cxy ∈ P(2l2∞) for some

a, b, c ∈ R. Then there exists (unique) P
′
(x, y) = a∗x2 + b∗y2 + c∗xy ∈

P(2l2∞) such that a∗, b∗, c∗ ∈ {±a,±b,±c} with a∗ ≥ |b∗|, c∗ ≥ 0 and

‖P‖ = ‖P ′‖.

Proof. If a < 0, taking −P , we assume that a ≥ 0. If |b| > a,

Let P
′
1(x, y) := P (y, x) = |b|x2 + ay2 + cxy.

Then, ‖P ′
1‖ = ‖P‖. If c < 0,

Let P
′
2((x, y) := P

′
1(x,−y) = |b|x2 + ay2 + |c|xy.

Then, ‖P ′
2‖ = ‖P‖. Therefore, we can find a polynomial P

′ ∈ P(2l2∞)
which satisfies the conditions of the lemma.

Theorem A([4]). Let P (x, y) = ax2+by2+cxy ∈ P(2l2∞) with a ≥ |b|
and c ≥ 0. Then, If b ≥ 0 or (b < 0 and c > 2|b|), then ‖P‖ = a + b + c.

If b < 0 and c ≤ 2|b|, then

‖P‖ =
c2

4|b|
+ a.

Notice that if ‖P‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1.

Let P (x, y) = ax2 + by2 + cxy ∈ P(2l2∞) for some a, b, c ∈ R. Notice
that (x, y) ∈ Norm(P ) if and only if (−x,−y) ∈ Norm(P ). By Lemma
2.1, we may assume that a ≥ |b| and c ≥ 0. We are in position to prove
the main result of this paper.

Theorem 2.2. Let P (x, y) = ax2 + by2 + cxy ∈ P(2l2∞) be such that
‖P‖ = 1 with a ≥ |b| and c ≥ 0. Then,
Case 1: b ≥ 0.
If a = 1, then

Norm(P ) = {±(1, t) : −1 ≤ t ≤ 1}.
If (0 < a < 1 and b = 0) or (b > 0 and c > 0), then

Norm(P ) = {±(1, 1)}.
If (a = b = 0) or (b > 0, c = 0), then

Norm(P ) = {±(1, 1),±(1,−1)}.
Case 2: b < 0.
Subcase 1: c < 2|b|.
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If |b| = a, then

Norm(P ) = {±(1,−
√
a(1− a)

a
),±(−

√
a(1− a)

a
, 1)}.

If |b| < a, then

Norm(P ) = {±(1,− c

2b
)}.

Subcase 2: c = 2|b|.

Norm(P ) = {±(1, 1),±(1,−1)}.
Subcase 3: c > 2|b|.
If |b| = a, then

Norm(P ) = {±(1, 1),±(1,−1)}.
If |b| < a, then

Norm(P ) = {±(1, 1)}.

Proof. Case 1: b ≥ 0.
By Theorem A,

‖P‖ = 1 = a + b + c.

Suppose that (x, y) ∈ Norm(P ) for some x, y ∈ [−1, 1]. Notice that

1 = |P (x, y)| = |ax2+by2+cxy| ≤ a|x|2+b|y|2+c|x| |y| ≤ a+b+c = 1 (∗).

Suppose that a = 1. Then, b = c = 0. By (∗), |x| = 1. Hence,

Norm(P ) = {±(1, t) : −1 ≤ t ≤ 1}.

Suppose that (0 < a < 1 and b = 0) or (b > 0 and c > 0). By (∗),
xy = 1. Hence,

Norm(P ) = {±(1, 1)}.
Suppose that (a = b = 0) or (b > 0, c = 0). By (∗), |xy| = 1. Hence,

Norm(P ) = {±(1, 1),±(1,−1)}.

Case 2: b < 0.
Subcase 1: c < 2|b|.

Suppose that |b| = a. Then,

P = ax2 − ay2 + 2
√
a(1− a)xy (

1

2
< a ≤ 1).

If a = 1, then

Norm(P ) = {±(1, 0),±(0, 1)}.
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Let 1
2 < a < 1. Suppose that (1, y) ∈ Norm(P ) for some y ∈ [−1, 1].

Then,

1 = |P (1, y)| = |a− ay2 + 2
√
a(1− a)y|.

If 1 = P (1, y), then

y = −
√

a(1− a)

a

and (1,−
√

a(1−a)
a ) ∈ Norm(P ). Notice that if −1 = P (1, y), then there

are no norming points of P .
Suppose that (x, 1) ∈ Norm(P ) for some x ∈ [−1, 1]. Notice that if

1 = P (x, 1), there are no norming points of P . Notice that if −1 =
P (x, 1), then

x = −
√
a(1− a)

a

and (−
√

a(1−a)
a , 1) ∈ Norm(P ). Hence,

Norm(P ) = {±(1,−
√
a(1− a)

a
),±(−

√
a(1− a)

a
, 1)}.

Suppose that |b| < a. By Theorem A,

1 = ‖P‖ =
c2

4|b|
+ a,

so

c2 = 4|b|(1− a).

Suppose that (1, y) ∈ Norm(P ) for some y ∈ [−1, 1]. Then,

1 = |P (1, y)| = |a + by2 + cy|.
Notice that if 1 = P (1, y), then y = − c

2b . Hence, ±(1,− c
2b) ∈ Norm(P ).

Notice that if −1 = P (1, y), then there are no norming points of P .
Suppose that (x, 1) ∈ Norm(P ) for some x ∈ [−1, 1]. Notice that

there are no norming points of P in this case. Therefore,

Norm(P ) = {±(1,− c

2b
)}.

Subcase 2: c = 2|b|.
By Theorem A, b = a− 1. Hence,

P = ax2 − (1− a)y2 + 2(1− a)xy (
1

2
≤ a < 1).

Suppose that (1, y) ∈ Norm(P ) for some y ∈ [−1, 1]. Then,

1 = |P (1, y)| = |a− (1− a)y2 + 2(1− a)y|.
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Notice that if 1 = P (1, y), then y = −1, so (1,−1) ∈ Norm(P ). Notice
that if −1 = P (1, y), then y = −1, so (1,−1) ∈ Norm(P ).

Suppose that (x, 1) ∈ Norm(P ) for some x ∈ [−1, 1]. Notice that
if 1 = P (x, 1), then x = 1, so (1, 1) ∈ Norm(P ). Notice that if −1 =
P (x, 1), then x = −1, so (−1, 1) ∈ Norm(P ). Therefore,

Norm(P ) = {±(1, 1),±(1,−1)}.

Subcase 3: c > 2|b|.
Suppose that |b| = a. Then

P = ax2 − ay2 + xy (0 < a <
1

2
).

Obviously, (1, 1), (1,−1) ∈ Norm(P ). Suppose that (1, y) ∈ Norm(P )
for some y ∈ [−1, 1]. Notice that if 1 = P (1, y), then y = 1, so (1, 1) ∈
Norm(P ). Notice that if −1 = P (1, y), then y = −1, so (1,−1) ∈
Norm(P ).

Suppose that (x, 1) ∈ Norm(P ) for some x ∈ [−1, 1]. Notice that
if 1 = P (x, 1), then x = 1, so (1, 1) ∈ Norm(P ). Notice that if −1 =
P (x, 1), then x = −1, so (−1, 1) ∈ Norm(P ). Therefore,

Norm(P ) = {±(1, 1),±(1,−1)}.

Suppose that |b| < a. Then, 2|b| < c < 2a. Note that

2|b| < c < 2a⇔ 1 + |b|
3

< a < 1− |b|

and

3 + b− 2
√

2b + 2 <
1 + |b|

3
.

Suppose that (1, y) ∈ Norm(P ) for some y ∈ [−1, 1]. Then,

1 = |P (1, y)| = |by2 + cy + a|.
Notice that if 1 = P (1, y), then

y =
c±

√
c2 − 4b(a− 1)

2|b|
= 1,

so (1, 1) ∈ Norm(P ). Suppose that −1 = P (1, y). Then

y =
c±

√
c2 − 4b(a + 1)

2|b|
.

Notice that

|
c±

√
c2 − 4b(1 + a)

2|b|
| > 1,



The norming set of a polynomial in P(2l2∞) 575

a contradiction. Hence, if −1 = P (1, y), then there are no norming
points of P .

Suppose that (x, 1) ∈ Norm(P ) for some x ∈ [−1, 1]. Then,

1 = |P (x, 1)| = |ax2 + cx + b|.

Notice that if 1 = P (x, 1), then

y =
−c±

√
c2 − 4a(b− 1)

2a
= 1,

so (1, 1) ∈ Norm(P ). Note that

c2 − 4a(b + 1) ≥ 0⇔ 0 ≤ a ≤ 3 + b− 2
√

2b + 2.

Notice that if −1 = P (x, 1), then

y =
−c±

√
c2 − 4a(b + 1)

2a
/∈ R

since c2 − 4a(b + 1) < 0. Hence, if −1 = P (1, y), then there are no
norming points of P . Hence,

Norm(P ) = {±(1, 1)}.

Therefore, we complete the proof.
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