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A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED

BY USING MITTAG-LEFFLER FUNCTION

Tahir Mahmood, Muhammad Naeem, Saqib Hussain,
Shahid Khan, and Şahsene Altınkaya∗

Abstract. In this paper, new subclasses of analytic functions are
proposed by using Mittag-Leffler function. Also some properties of
these classes are studied in regard to coefficient inequality, distor-
tion theorems, extreme points, radii of starlikeness and convexity
and obtained numerous sharp results.

1. Introduction

Let C be the complex plane and let Ω = {w : w ∈ C and |w| < 1},
the open unit disc. Further, by A we represent the class of functions
analytic in Ω, satisfying the condition

l(0) = l′(0)− 1 = 0.

Thus each function l in A has a Taylor series representation

(1) l(w) = w + o2w
2 + o3w

3 + · · · = w +

∞∑
n=2

onw
n

and let S, T be the subclasses of A consisting of functions which are
univalent in Ω [9], and with negative coefficients given by (see [27])

(2) l(w) = w −
∞∑
n=2

onw
n, (on ≥ 0) ,

respectively.
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We now recall that the analytic function l is said to be subordinate to
the analytic function m (indicated as l ≺ m), if there exists a Schwarz
function

$(w) =
∞∑
n=1

cnw
n ($ (0) = 0, |$ (w)| < 1) ,

analytic in Ω such that

l (w) = m ($ (w)) (w ∈ Ω) .

Furthermore, if the function m is univalent in Ω, then we have the
following equivalence, see [9, 13].

l (w) ≺ m (w)⇐⇒ l(0) = m(0) and l (Ω) ⊂ m (Ω) (w ∈ Ω) .

The convolution or Hadamard product of two functions l and m is de-
noted by l ∗m is defined as

(l ∗m)(w) =
∞∑
n=0

onbnw
n,

where l is given by (1) and m (w) =
∞∑
n=2

bnw
n (w ∈ Ω).

Recall that D ⊂ C is said to be a starlike with respect to the point
w0 ∈ D if and only if the line segment joining w0 to every other point
w ∈ D lies entirely in D, while the set D is said to be convex if and
only if it is starlike with respect to each of its points. By S∗ and K
we mean the subclasses of S composed of starlike and convex functions,
respectively. A function l ∈ A is said to be starlike of order α, 0 ≤ α < 1,
if

<

(
wl
′
(w)

l(w)

)
> α (w ∈ Ω) ,

and a function l ∈ A is said to be convex of order α, 0 ≤ α < 1, if

<


(
wl
′
(w)
)′

l′(w)

 > α (w ∈ Ω) .

By K, we mean l ∈ A and the class of all close-to-convex functions of
order α, 0 ≤ α < 1, if

<

(
wl
′
(w)

g′ (w)

)
> α
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where g is convex. In 1991, Goodman [10] introduced the class UCV
of uniformly convex functions which was extensively studied by Ron-
ning and independently by Ma and Minda [17, 23]. A more convenient
characterization of class UCV was given by Ma and Minda as:

l ∈ UCV ⇐⇒ l ∈ A and <

{
1 +

wl
′′
(w)

l′(w)

}
>

∣∣∣∣∣wl
′′
(w)

l′(w)

∣∣∣∣∣ (w ∈ Ω) .

In 1999, Kanas and Wisniowska [12, 13] (see also [14, 15]) introduced
the class k−uniformly convex functions, k ≥ 0, denoted by k−UCV and
a related class k − ST as:

l ∈ k − UCV ⇐⇒ wl
′
∈ k − ST ⇐⇒ l ∈ A and <


(
wl
′
(w)
)′

l′ (w)

 >

∣∣∣∣∣wl
′′

(w)

l′ (w)

∣∣∣∣∣ (w ∈ Ω) .

The class k−UCV was discussed earlier in [31], with same extra restric-
tion and without geometrical interpretation by Bharati et al. [4].

Mittag-Leffler defined familiar Mittag-Leffler function [19, 20] Mα(w)
by

Mα(w) =
∞∑
n=0

wn

Γ(α+ 1)
,

and Wiman [33] generalized this function by

Mα,µ(w) =
∞∑
n=0

wn

Γ(αn+ µ)
(α ≥ 0) ,

where < (α) > 0, < (µ) > 0 and α, µ ∈ C. Many researchers explain the
Mittag-Leffler function and its generalizations see [3, 8, 18, 24, 28, 29,
30].

An important theory that has contributed significantly in geometric
function theory is differential operator theory. Numerous researchers
have worked intensively in this way, for recent work see [1, 5, 7, 21].
Elhaddad [6] introduced the following differential operator for l ∈ A

(3) Di
χ(α, µ)l(w) = w +

∞∑
n=2

[1 + (n− 1)χ]i
Γ (µ)

Γ(α(n− 1) + µ)
onw

n,

and for l ∈ T

(4) Di
χ(α, µ)l(w) = w −

∞∑
n=2

[1 + (n− 1)χ]i
Γ (µ)

Γ(α(n− 1) + µ)
onw

n.
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Definition 1.1. A function l ∈ A is said to be in the class

Qα,µ
χ,i,j (γ,H, I)

(−1 ≤ I < H ≤ 1, α, µ, γ, χ ≥ 0, i ∈ N, j ∈ N0 = N ∪ {0} , i > j, w ∈ Ω)

if the following subordination relationship is satisfied:

Di
χ(α, µ)l(w)

Dj
χ(α, µ)l(w)

− γ

∣∣∣∣∣Di
χ(α, µ)l(w)

Dj
χ(α, µ)l(w)

− 1

∣∣∣∣∣ ≺ 1 +Hw

1 + Iw
.

For particular values of the parameters χ, α, µ,H, I, i, j, γ, we have
the following subclasses studied by various authors:

(i) Q0,1
1,i,j (γ, 1− 2ε,−1) = Ei,j (γ, ε) (see Sümer Eker and Owa [32]),

(ii) Q0,1
1,1,0 (γ, 1− 2ε,−1) = UE (γ, ε) (see Shams et al. [25]),

(iii)Q0,1
1,2,0 (γ, 1− 2ε,−1) = UE (γ, ε) (see Shams et al. [26]),

(iii) Q0,1
1,1,0 (0, H, I) = S∗ (H, I) (see Janowski [11]),

(iv) Q0.1
1,2,0 (0, H, I) = K (H, I) (see Padmanabhan and Ganesan [22]).

Definition 1.2. Let TQα,µ
χ,i,j (γ,H, I) denote the subclass of

A consisting of functions l of the form (2) and we define the class

TQα,µ
χ,i,j (γ,H, I) by

TQα,µ
χ,i,j (γ,H, I) = Qα,µ

χ,i,j (γ,H, I) ∩ T .

For particular values of the parameters χ, α, µ,H, I, i, j, γ, we have
the following subclasses studied by various authors:

(i) TQ0,1
1,i+1,i (γ, 1− 2ε,−1) = TS (i, γ, ε) (see Aouf [2]),

(ii) TQ0,1
1,1,0 (1, 1− 2ε,−1) = SpT (ε) (see Bharati et al. [4]),

(iii) TQ0,1
1,1,0 (0, 1− 2ε,−1) = T ∗ (ε) (see Silverman [27]).

2. Main Results

In this section, we will prove our main results.

Theorem 2.1. A function l of the form (1) is in the class

Qα,µ
χ,i,j (γ,H, I) if

(6)

∞∑
n=2

υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣] |on| ≤ H − I,

where φ = 1 + (n− 1)χ and υ = Γ(µ)
Γ(α(n−1)+µ) .
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Proof. We need to show that∣∣∣∣ p(w)− 1

H − Ip(w)

∣∣∣∣ < 1,

where

p(w) =
Di
χ(α, µ)l(w)

Dj
χ(α, µ)l(w)

− γ

∣∣∣∣∣Di
χ(α, µ)l(w)

Dj
χ(α, µ)l(w)

− 1

∣∣∣∣∣ .
Hence, we obtain∣∣∣∣ p(w)− 1

H − Ip(w)

∣∣∣∣
=

∣∣∣∣∣∣
Diχ(α, µ)l(w)−Djχ(α, µ)l(w)− γeiθ

∣∣∣Diχ(α, µ)l(w)−Djχ(α, µ)l(w)
∣∣∣

HDjχ(α, µ)l(w)− I
[
Diχ(α, µ)l(w)− γeiθ

∣∣∣Diχ(α, µ)l(w)−Djχ(α, µ)l(w)
∣∣∣]
∣∣∣∣∣∣

=

∣∣∣∣∣
∑∞
n=2 υ

(
φi − φj

)
onwn − γeiθ

∣∣∑∞
n=2 υ

(
φi − φj

)
onwn

∣∣
(H − I)w −

[∑∞
n=2 υ (Iφi −Hφj) onwn − γIeiθ

∣∣∑∞
n=2 υ (φi − φj) onwn

∣∣]
∣∣∣∣∣

≤
∑∞
n=2 υ

(
φi − φj

)
|on| |w|n + γ

∑∞
n=2 υ

(
φi − φj

)
|on| |w|n

(H − I) |w| −
[∑∞

n=2 υ |(Iφi −Hφj)| |on| |w|
n + γ |I|

∑∞
n=2 υ (φi − φj) |on| |w|n

]
≤

∑∞
n=2 υ

(
φi − φj

)
(1 + γ) |on|

(H − I)−
∑∞
n=2 υ |(Iφi −Hφj)| |on| − γ |I|

∑∞
n=2 υ (φi − φj) |on|

.

This last expression is bounded previously by 1 if

∞∑
n=2

υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣] |on| ≤ H − I.

This completes the proof.

In Theorem (2.2), it is shown that the condition in (6) is also neces-

sary for functions l of the form (2) to be in the class TQα,µ
χ,i,j (γ,H, I).

Theorem 2.2. Let l ∈ T . Then l ∈ TQα,µ
χ,i,j (γ,H, I) if

∞∑
n=2

υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣] |on| ≤ H − I,

where φ = 1 + (n− 1)χ and υ = Γ(µ)
Γ(α(n−1)+µ) .

Proof. Since

TQα,µ
χ,i,j (γ,H, I) ⊆ Qα,µ

χ,i,j (γ,H, I) ,

by making use of the same technique given in the proof of Theorem
(2.1), we immediately have Theorem (2.2) .
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Corollary 2.3. A function l defined by (2) is in the class

TQα,µ
χ,i,j (γ,H, I), then

(7) on ≤
H − I

υ [{1 + γ (1 + |I|)} (φi − φj) + |Iφi −Hφj |]
(n ≥ 2) .

The result is sharp for the function
(8)

l(w) = w − H − I
υ [{1 + γ (1 + |I|)} (φi − φj) + |Iφi −Hφj |]

wn (n ≥ 2) .

The growth and distortion properties of the function l in the respec-

tive class TQα,µ
χ,i,j (γ,H, I) are given as follows:

Theorem 2.4. Let the function l defined by (2) belong to the class

TQα,µ
χ,i,j (γ,H, I). Then

|l(w)| ≥ |w|−
(H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣∣I (1 + χ)i −H (1 + χ)j

∣∣∣] |w|2
and

|l(w)| ≤ |w|+
(H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i−(1 + χ)j

)
+
∣∣∣I (1 + χ)i−H (1 + χ)j

∣∣∣] |w|2 .
Proof. In view of Theorem (2.2), consider

δ(n) = υ {1 + γ (1 + |I|)}
(
φi − φj

)
+
∣∣Iφi −Hφj∣∣ ,

where φ = 1 + (n− 1)χ and υ = Γ(µ)
Γ(α(n−1)+µ) , δ(n) is an increasing

function for n (n ≥ 2). This implies that

δ(2)
∞∑
n=2

|on| ≤
∞∑
n=2

δ(n) |on| ≤ H − I,

that is
∞∑
n=2

|on| ≤
H − I
δ(2)

.

Thus we have

|l(w)| ≤ |w|+
∞∑
n=2

|on| |w|2 ,

|l(w)| ≤ |w|+
(H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i−(1 + χ)j

)
+
∣∣∣I (1 + χ)i−H (1 + χ)j

∣∣∣] |w|2 .
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Similarly, we get

|l(w)| ≥ |w| −
∞∑
n=2

|on| |w|n ≥ |w| −
∞∑
n=2

|on| |w|2

≥ |w| −
(H − I) Γ(α+ µ)

Γ (µ)
[
{1+γ (1+|I|)}

(
(1+χ)i−(1+χ)j

)
+
∣∣∣I (1+χ)i−H (1+χ)j

∣∣∣] |w|2 .
Finally, the result is sharp for the function

(9)

l(w) = w −
(H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣∣I (1 + χ)i −H (1 + χ)j

∣∣∣]w2

at |w| = r and w = rei(2k+1)π (k ∈ Z).This completes Theorem (2.4).

Theorem 2.5. Let the function l defined by (2) belong to the class

TQα,µ
χ,i,j (γ,H, I). Then∣∣∣l′ (w)
∣∣∣ ≥ 1−

2 (H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣∣I (1 + χ)i −H (1 + χ)j

∣∣∣] |w| ,
and∣∣∣l′ (w)

∣∣∣ ≤ 1 +
2 (H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣∣I (1 + χ)i −H (1 + χ)j

∣∣∣] |w| .
The result is sharp.

Proof. In view of Theorem (2.2), suppose that

δ(n) = υ {1 + γ (1 + |I|)}
(
φi − φj

)
+
∣∣Iφi −Hφj∣∣ ,

where φ = 1 + (n− 1)χ and υ = Γ(µ)
Γ(α(n−1)+µ) , Φ(n)

n is an increasing

function for n (n ≥ 2). Similarly, we obtain

δ(2)

2

∞∑
n=2

n |on| ≤
∞∑
n=2

δ(n)

n
n |on| =

∞∑
n=2

δ(n) |on| ≤ (H − I) ,

that is
∞∑
n=2

n |on| ≤
2 (H − I)

δ(2)

and consequently ∣∣∣l′(w)
∣∣∣ ≤ 1 +

∞∑
n=2

n |on| |w| ,

∣∣∣l′ (w)
∣∣∣ ≤ 1 +

2 (H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣∣I (1 + χ)i −H (1 + χ)j

∣∣∣] |w| .
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Also, we get∣∣∣l′ (w)
∣∣∣ ≥ 1−

∞∑
n=2

n |on| |w|

∣∣∣l′ (w)
∣∣∣ ≥ 1−

2 (H − I) Γ(α+ µ)

Γ (µ)
[
{1+γ (1+|I|)}

(
(1+χ)i−(1+χ)j

)
+
∣∣∣I (1+χ)i−H (1+χ)j

∣∣∣] |w| .
Finally, we can see that the assertions of Theorem (2.5) are sharp for

the function l defined by (9). This completes the proof of Theorem
(2.5).

Now we obtain the radii of close-to-convexity, starlikeness and con-

vexity for the class TQα,µ
χ,i,j (γ,H, I) .

Theorem 2.6. Let the function l defined by (2) be in the class

TQα,µ
χ,i,j (γ,H, I). Then

(i) l is starlike of order α (0 ≤ α < 1) in |w| < r1, where

(10) r1 = inf
n≥2

{
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
×
(

1− α
n− α

)} 1
n−1

,

(ii) l is convex of order α (0 ≤ α < 1) in |w| < r2, where
(11)

r2 = inf
n≥2

{
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
×
(

1− α
n (n− α)

)} 1
n−1

,

(ii) l is close to convex of order α (0 ≤ α < 1) in |w| < r3, where

(12) r3 = inf
n≥2

{
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
×
(

1− α
n

)} 1
n−1

.

Each of these results is sharp for the function l given by (8) .

Proof. It is sufficient to show that∣∣∣∣∣wl
′
(w)

l(w)
− 1

∣∣∣∣∣ ≤ 1− α for |w| < r1,

where r1 is given by (10). Indeed we find from (2) that is∣∣∣∣∣wl
′
(w)

l(w)
− 1

∣∣∣∣∣ ≤
∑∞

n=2(n− 1)on |w|n−1

1−
∑∞

n=2 on |w|
n−1 .

Thus, we have ∣∣∣∣∣wl
′
(w)

l(w)
− 1

∣∣∣∣∣ ≤ 1− α,
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if and only if

(13)

∑∞
n=2(n− α)on |w|n−1

(1− α)
≤ 1.

But, by Theorem (2.2), equation (13) will be true if(
n− α
1− α

)
|w|n−1 ≤

υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
,

that is, if

|w| ≤

{
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
×
(

1− α
n− α

)} 1
n−1

(n ≥ 2)

this implies

r1 = inf
n≥2

{
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
×
(

1− α
n− α

)} 1
n−1

(n ≥ 2) .

This completes the proof of equation (10).
To prove (11) and (12) it is sufficient to show that∣∣∣∣∣1 +

wl
′′
(w)

l′(w)
− 1

∣∣∣∣∣ ≤ 1− α (|w| < r2, 0 ≤ α < 1) ,

and ∣∣∣l′(w)− 1
∣∣∣ ≤ 1− α (|w| < r3, 0 ≤ α < 1) .

Next, we discussed extreme points for functions belonging to the class

TQα,µ
χ,i,j (γ,H, I) .

Theorem 2.7. Let
l1(w) = w,

ln(w) = w − H − I
υ [{1 + γ (1 + |I|)} (φi − φj)+|Iφi−Hφj |]

wn (n ≥ 2) ,

where φ = 1+(n− 1)χ and υ = Γ(µ)
Γ(α(n−1)+µ) , then l(w)∈TQα,µ

χ,i,j (γ,H, I)

if and only if it can be expressed in the following form

l(w) =
∞∑
n=1

ηnln(w),

where

ηn ≥ 0,
∞∑
n=1

ηn = 1.
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Proof. Suppose that

l(w) =

∞∑
n=1

ηnln(w)

= w −
∞∑
n=2

ηn
H − I

υ [{1 + γ (1 + |I|)} (φi − φj) + |Iφi −Hφj |]
wn.

Then, from Theorem (2.2), we have

∞∑
n=2

[
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣] (H − I)

υ [{1 + γ (1 + |I|)} (φi − φj) + |Iφi −Hφj |]
ηn

]

= (H − I)

∞∑
n=2

ηn = (H − I)(1− η1) ≤ (H − I).

Thus, in view of Theorem (2.2), we find that l ∈ TQα,µ
χ,i,j (γ,H, I). Con-

versely, let us suppose that l ∈ TQα,µ
χ,i,j (γ,H, I), then, since

on ≤
H − I

υ [{1 + γ (1 + |I|)} (φi − φj) + |Iφi −Hφj |]
by setting

ηn =
υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

(H − I)
o (n ≥ 2)

and

η1 = 1−
∞∑
n=2

ηn,

we have

l(w) =
∞∑
n=1

ηnln(w).

This completes the proof of Theorem.

Corollary 2.8. The extreme points of the class TQα,µ
χ,i,j (γ,H, I) are

given by

l1(w) = w,

ln(w) = w − H − I
υ [{1 + γ (1 + |I|)} (φi − φj) + |Iφi −Hφj |]

wn (n ≥ 2) .

In order to state the integral means inequality for l ∈ TQα,µ
χ,i,j (γ,H, I)

we need the following subordination result due to Littlewood [16].
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Lemma 2.9. If the functions l and m are analytic in Ω with

l ≺ m

then for p > 0 and w = reiθ(0 < r < 1),

(14)

∫ 2π

0
|l(w)|p dθ ≤

∫ 2π

0
|m(w)|p dθ.

Theorem 2.10. Suppose that l ∈ TQα,µ
χ,i,j (γ,H, I) and l2(w) is de-

fined by

l2(w) = w −
(H − I) Γ(α+ µ)

Γµ
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣∣I (1 + χ)i −H (1 + χ)j

∣∣∣]w2

then for w = reiθ(0 < r < 1), we have∫ 2π

0
|l(w)|p dθ ≤

∫ 2π

0
|l2(w)|p dθ.

Proof. Let l(w) = w −
∞∑
n=2

onw
n ( on ≥ 0) then we must show that

∫ 2π

0

∣∣∣∣∣1−
∞∑
n=2

onw
n−1

∣∣∣∣∣
p

dθ

≤
∫ 2π

0

∣∣∣∣∣1− (H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣I (1 + χ)i −H (1 + χ)j

∣∣]w
∣∣∣∣∣
p

dθ.

By Lemma (2.9), it is enough to show that

1−
∞∑
n=2

onw
n−1 ≺ 1−

(H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i − (1 + χ)j

)
+
∣∣I (1 + χ)i −H (1 + χ)j

∣∣]w.
By setting

1−
∞∑
n=2

onw
n−1

= 1−
(H − I) Γ(α+ µ)

Γ (µ)
[
{1 + γ (1 + |I|)}

(
(1 + χ)i−(1+χ)j

)
+
∣∣I (1 + χ)i−H (1+χ)j

∣∣]$(w)

and using (6), we obtain

|$(w)| =

∣∣∣∣∣
∞∑
n=2

Γ (µ)
[
{1+γ (1+|I|)}

(
(1+χ)i−(1+χ)j

)
+
∣∣I (1+χ)i−H (1+χ)j

∣∣]
(H − I) Γ(α+ µ)

onw
n−1

∣∣∣∣∣
≤ |w|

∞∑
n=2

Γ (µ)
[
{1+γ (1+|I|)}

(
(1+χ)i−(1+χ)j

)
+
∣∣I (1+χ)i−H (1+χ)j

∣∣]
(H − I) Γ(α+ µ)

on

≤ |w|
∞∑
n=2

υ
[
{1 + γ (1 + |I|)}

(
φi − φj

)
+
∣∣Iφi −Hφj∣∣]

H − I
on

≤ |w| < 1.

This completes the proof of Theorem (2.10).
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3. Consequences and observations

In our present investigation, we have introduced and studied the prop-
erties of the analytic function classes

Qα,µ
χ,i,j (γ,H, I) , TQα,µ

χ,i,j (γ,H, I)

(−1 ≤ I < H ≤ 1, α, µ, γ, χ ≥ 0, i ∈ N, j ∈ N0, i > j, w ∈ Ω) ,

involving the Mittag-Leffler function. For functions belonging to these
classes, we have derived coefficient conditions, extreme points, convolu-
tion conditions. The results obtained here are sharp. Our investigation
involving the Mittag-Leffler function is potentially useful in motivating
further researches on this subject.
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