DOI QR코드

DOI QR Code

The Relationship between the Progression of Chronic Kidney Disease and Beta Cell Function in Non-Diabetic Korean Adults

대한민국 비당뇨 성인에서 만성신장질환과 인슐린저항성 및 베타세포기능의 관련성

  • 김형락 (성가롤로병원 진단검사의학과)
  • Received : 2020.08.23
  • Accepted : 2020.09.01
  • Published : 2020.09.30

Abstract

This study examined the relationship between chronic kidney disease (CKD) and the homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-B) in non-diabetic Korean adults. This study included 4,380 adults aged 20 or older (50.32±16.14) using the 2015 Korea National Health and Nutrition Examination Survey (KNHANES) data, which represents the national data in Korea. The present study had several key findings. First, in terms of HOMA-IR, after adjusting for the related variables (Model 4), the HOMA-IR (M±SE, 95% confidence interval [CI]) in group 1 (G1; estimated glomerular filtration rate [eGFR], ≥90 mL/min/1.73 ㎡), group 2 (G2; eGFR, 60~89 mL/min/1.73 ㎡), group 3a (G3a; eGFR, 30~59 mL/min/1.73 ㎡), and ≥group 3b (≥G3b; eGFR, <30 mL/min/1.73 ㎡) were 1.78±0.03 (1.73~1.83), 1.87±0.03 (1.81~1.93), 2.16±0.13 (1.91~2.42), and 2.59±0.24 (2.12~3.06), respectively. The HOMA-IR was positively associated with the progression of CKD (P<0.001). Second, in terms of the HOMA-B, after adjusting for the related variables (Model 4), the HOMA-B (M±SE, 95% CI) in G1, G2, G3a, and ≥G3b were 87.46±1.21 (85.08~89.84), 89.11±1.38 (86.40~91.81), 104.82±5.91 (93.23~116.42), and 123.97±10.87 (102.66~145.29), respectively. HOMA-B was positively associated with the progression of CKD (P<0.001). Both insulin resistance and the beta-cell function were positively associated with CKD in non-diabetic Korean adults.

본 연구의 목적은 대한민국 20세 이상(50.32±16.14세)의 당뇨질환이 없는 성인에서 만성신장질환과 인슐린저항성(homeostasis model assessment of insulin resistance, HOMA-IR) 및 베타세포기능(homeostasis model assessment of beta cell function, HOMA-B)의 관련성에 대하여 조사하였다. 본 연구는 2015년도 국민건강영양조사 자료를 이용하여 당뇨질환이 없는 20세 이상의 대한민국 성인 4,380명을 대상으로 하였다. 본 연구결과에서 중요한 결과는 다음과 같다. 첫째, 만성신장질환과 HOMA-IR와 관련하여, 관련변수를 보정한 후의 결과에서(Model 4), 그룹 1 (G1; estimated glomerular filtrationrate [eGFR], ≥90 mL/min/1.73 ㎡), 그룹 2 (G2; eGFR, 60~89 mL/min/1.73 ㎡), 그룹 3a (G3a; eGFR, 30~59 mL/min/1.73 ㎡), ≥그룹 3b (≥G3b; eGFR, <30 mL/min/1.73 ㎡)의 HOMA-IR 평균값(M±SE, 95% confidence interval [CI])은 각각 1.78±0.03 (1.73~1.83), 1.87±0.03 (1.81~1.93), 2.16±0.13 (1.91~2.42) 및 2.59±0.24 (2.12~3.06)으로 만성신장질환이 진행됨에 따라 HOMA-IR은 증가하였다(P<0.001). 둘째, 만성신장질환과 HOMA-B와 관련하여, 관련변수를 보정한 후의 결과에서(Model 4), G1, G2, G3a 및 ≥G3b의 HOMA-B 평균값(M±SE, 95% CI)은 각각 87.46±1.21 (85.08~89.84), 89.11±1.38(86.40~91.81), 104.82±5.91 (93.23~116.42) 및 123.97±10.87 (102.66~145.29)으로 만성신장질환이 진행됨에 따라 HOMA-B도 증가하였다(P<0.001). 대한민국 당뇨질환이 없는 성인에서 만성신장질환이 진행됨에 따라 인슐린 저항성이 증가하였고, 베타세포기능 또한 증가하였다.

Keywords

References

  1. World Kidney Day. Chronic kidney disease [Internet]. Brussels: Belgium; 2015 [cited 2020 Apr 21]. Available from: http://www.worldkidneyday.org/faqs/chronic-kidney-disease/
  2. Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N, et al. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant. 2005;20:1048-1056. https://doi.org/10.1093/ndt/gfh813
  3. Duan J, Wang C, Liu, D. Qiao Y, Pan S, Jiang D, et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: a cross-sectional survey. Sci Rep. 2019;9:10408. https://doi.org/10.1038/s41598-019-46857-7
  4. Martin BC, Warram JH, Krolewski A, Soeldner J, Kahn C, Bergman R. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year followup study. Lancet. 1992;340:925-929. https://doi.org/doi:10.1016/0140-6736(92)92814-v
  5. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hyper tension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173-194. https://doi.org/10.2337/diacare.14.3.173
  6. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017;6:943-957. https://doi.org/10.1016/j.molmet.2017.06.019
  7. Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med (Zagreb). 2013;23:266-280. https://doi.org/10.11613/bm.2013.033
  8. Page KA, Reisman T. Interventions to preserve beta-cell function in the management and prevention of type 2 diabetes. Curr Diab Rep. 2013;13:252-260. https://doi.org/10.1111/dom.13196
  9. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412-419. https://doi.org/10.1007/BF00280883
  10. Srivastava N, Singh RG, Usha, Kumar A, Singh S. Insulin resistance in predialytic, nondiabetic,chronic kidney disease patients: a hospital-based study in Eastern Uttar Pradesh, India. Saudi J Kidney Dis Transpl. 2017;28:36-43. https://doi.org/10.4103/1319-2442.198114
  11. Chen J, Muntner P, Hamm LL, Fonseca V, Batuman V, Whelton PK, et al. Insulin resistance and risk of chronic kidney disease in nondiabetic US adults. J Am Soc Nephrol. 2003;14:469-477. https://doi.org/10.1097/01.asn.0000046029.53933.09
  12. Trirogoff ML, Shintani A, Himmelfarb J, Ikizler TA. Body mass index and fat mass are the primary correlates of insulin resistance in nondiabetic stage 3-4 chronic kidney disease patients. Am J Clin Nutr. 2007;86:1642-1648. https://doi.org/10.1093/ajcn/86.5.1642
  13. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD; Collaborative Study Group. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329:1456-1462. https://doi.org/10.1056/NEJM199311113292004
  14. El-Atat FA, Stas SN, McFarlane SI, Sowers JR. The relationship between hyperinsulinemia, hypertension and progressive renal disease. J Am Soc Nephrol. 2004;15:2816-2827. https://doi.org/10.1097/01.ASN.0000133698.80390.37
  15. Mima A, Qi W, Hiraoka-Yamomoto J, Park K, Matsumoto M, Kitada M, et al. Retinal not systemic oxidative and inflammatory stress correlated with VEGFexpression in rodent models of insulin resistance and diabetes. Invest Ophthalmol Vis Sci. 2012;53:8424-8432. https://doi.org/10.1167/iovs.12-10207
  16. Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, Frank A, et al. Structural and functional abnormalities in theislets isolated from type 2 diabetic subjects. Diabetes. 2004;53:624-632. https://doi.org/10.2337/diabetes.53.3.624
  17. Gunton JE, Kulkarni RN, Yim S, Okada T, Hawthorne, Tseng YH, et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic islet dysfunction in human type 2 diabetes. Cell. 2005;122:337-349. https://doi.org/10.1016/j.cell.2005.05.027
  18. Pham H, Robinson-Cohen C, Biggs ML, Ix JH, Mukamal KJ, Fried LF, et al. Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin J Am Soc Nephrol. 2012;7:588-594. https://doi.org/10.2215/CJN.11861111
  19. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487-1495. https://doi.org/10.2337/diacare.27.6.1487
  20. Pham H, Utzschneider KM, de Boer IH. Measurement of insulin resistance in chronic kidney disease. Curr Opin Nephrol Hypertens. 2011;20:640-646. https://doi.org/10.1097/MNH.0b013e32834b23c1
  21. Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016;311:1087-1108. https://doi.org/10.1152/ajprenal.00340.2016