DOI QR코드

DOI QR Code

Automated Construction Progress Management Using Computer Vision-based CNN Model and BIM

이미지 기반 기계 학습과 BIM을 활용한 자동화된 시공 진도 관리 - 합성곱 신경망 모델(CNN)과 실내측위기술, 4D BIM을 기반으로 -

  • Rho, Juhee (Department of Architectural Engineering, Seoul National University) ;
  • Park, Moonseo (Department of Architectural Engineering, Seoul National University) ;
  • Lee, Hyun-Soo (Department of Architectural Engineering, Seoul National University)
  • Received : 2020.05.07
  • Accepted : 2020.07.01
  • Published : 2020.09.30

Abstract

A daily progress monitoring and further schedule management of a construction project have a significant impact on the construction manager's decision making in schedule change and controlling field operation. However, a current site monitoring method highly relies on the manually recorded daily-log book by the person in charge of the work. For this reason, it is difficult to take a detached view and sometimes human error such as omission of contents may occur. In order to resolve these problems, previous researches have developed automated site monitoring method with the object recognition-based visualization or BIM data creation. Despite of the research results along with the related technology development, there are limitations in application targeting the practical construction projects due to the constraints in the experimental methods that assume the fixed equipment at a specific location. To overcome these limitations, some smart devices carried by the field workers can be employed as a medium for data creation. Specifically, the extracted information from the site picture by object recognition technology of CNN model, and positional information by GIPS are applied to update 4D BIM data. A standard CNN model is developed and BIM data modification experiments are conducted with the collected data to validate the research suggestion. Based on the experimental results, it is confirmed that the methods and performance are applicable to the construction site management and further it is expected to contribute speedy and precise data creation with the application of automated progress monitoring methods.

시공 현장 일단위의 진도 관리는 프로젝트 전체의 일정 관리와 성공적인 건설 프로젝트 완료에 상당한 영향을 미친다. 그러나 현재의 현장 진도 관리는 작업 담당자에 의하여 수기로 작성되기 때문에 객관적 입장의 유지가 어렵고, 일과 후 추가업무로 작성되어 내용의 누락 등 오류가 발생하는 경우가 있다. 인적 오류로 인한 잘못된 기록 작성의 문제를 해결하기 위하여 기존 연구들은 객체 인식 기반 현황의 시각화 또는 자동 BIM 데이터 수정 기술을 개발하였다. 그러나 특정 장비의 사용 또는 고정된 위치에서 장비사용을 전제로 하는 방법적 한계로 인하여 건물 시공 현장 전체를 파악하는 데에는 제약이 있다. 이러한 한계를 극복하기 위하여 본 연구는 작업자가 휴대하는 스마트기기를 활용하여 촬영한 사진의 객체 인식 기술과 WIFI 기반의 실내 사용자의 측위 기술을 활용하여 추출된 정보를 BIM 데이터의 속성으로 반영하고 즉각적인 현황 파악과 향후 지속적 데이터 활용이 가능한 방법을 제안한다. 실제 시공 현장 관리에 적용 가능한 방법과 기술의 성능을 확인하였고, 기존 개발된 기술 대비 실용도가 높아 건설 현장 관리의 신속화와 정보 작성과 처리의 정밀화에 이바지할 것으로 기대된다.

Keywords

References

  1. Akhavia, R., and Behzadan, A. (2016). "Smartphone-based construction workers' activity recognition and classification." Automation in Construction, 71, pp. 198-209. https://doi.org/10.1016/j.autcon.2016.08.015
  2. Azar, R. (2017). "Semantic Annotation of Videos from Equipment-Intensive Construction Operations by Shot Recognition and Probabilistic Reasoning." Journal of Computing in Civil Engineering, 31(5), pp. 04017042-04017042. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000693
  3. buildingSMART International Modeling Support Group (2009). "IFC 2x Edition 3 Model Implementation Guide." buildingSMART International Modeling Support Group.
  4. Cho, T. (2018). Deep Learning for Everyone. Seoul: Gilbut Press.
  5. Deng, H., Hong, H., Luo, D., Deng, Y., and Su, C. (2020). "Automatic Indoor Construction Process Monitoring for Tiles Based on BIM and Computer Vision." Journal of Construction Engineering and Management, 146(1), DOI: 10.1061/(ASCE)CO.1943-7862.0001744.
  6. Ding, L., Fang, W., Luo, H., Love, P., Zhong, B., and Ouyang, X. (2018). "A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory." Automation in Construction, 86, pp. 118-124 https://doi.org/10.1016/j.autcon.2017.11.002
  7. Eastman, C., Jeong, Y., Sack, R., and Karner, L. (2009). "Exchange model and exchange object concepts for implementation of national BIM standards." Journal of Computing in Civil Engineering, 24(1), pp. 24-35.
  8. FARO (2010). "FARO Scanner Production Technology." FARO Technologies, United States, (Accessed May 1, 2020)
  9. Fang, W., Ding, L., Luo, H., and Love, D. (2018). "Falls from heights: A computer vision-based approach for safety harness detection." Automation in Construction, 91, pp. 53-61. https://doi.org/10.1016/j.autcon.2018.02.018
  10. Girshick, R., Donahue, H., Darrell, T., and Malik, J. (2014). "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." In CVPR, pp. 1-22
  11. Golparvar-fard, M., and Pena-Mora, F. (2007). "Application of Visualization Techniques for Construction Progress Monitoring." Congress on Computing in Civil Engineering, Proceedings, pp. 216-223.
  12. Golparvar-fard, M., Heydarian, A., and Niebles, J. (2013). "Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers." Advanced Engineering Informatics, 27, pp. 652-663. https://doi.org/10.1016/j.aei.2013.09.001
  13. Hamledari, H., McCabe, B., and Davari, S. (2017). "Automated Computer Vision-Based Detection of Components of Under-Construction Indoor Partitions." Automation in Construction, 74, pp. 78-97. https://doi.org/10.1016/j.autcon.2016.11.009
  14. Hamledari, H., McCabe, B., Davari, S., Shahi, A., Rezazadeh, E., and Flager, F. (2017). "Evaluation of Computer Vision-and 4D BIM-Based Construction Progress Tracking on a UAV Platform." Leadership in Sustainable Infrastructure, pp. 1-10.
  15. Han, K., Lin, J., and Golparvar-fard, M. (2015). "A Formalism for Utilization of Autonomous Vision-Based Systems and Integrated Project Models for Construction Progress Monitoring." Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure, pp. 118-131.
  16. He, H., Zhang, X., Ren, S., and Sun, J. (2016). "Deep Residual Learning for Image Recognition." 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778.
  17. He, K., Zhang, X., Ren, S., and Sun, J. (2015). "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition." In ECCV. pp. 1-14.
  18. Hikodukue, K. Python Ni Yoru Scraping and Kinkaigakusho Kaihatsu Technique (2017). Socym Press, Japan.
  19. Ibrahim, Y., Lukins, T., Zhang, X., Trucco, E., and Kaka, A. (2009). "Towards Automated Progress Assessment of Work package Components in Construction Projects Using Computer Vision." Advanced Engineering Informatics, 23, pp. 93-103. https://doi.org/10.1016/j.aei.2008.07.002
  20. BuildingSMART, (2018). "Industrial Foundation Classes from BuildingSMART." United States, (Accessed May 1, 2020)
  21. Kim, S., Kim, Y., Yoou,, J., and Kim, E. (2012). "A framework of the open BIM-based integrated information system for the Korean Traditional House." Journal of Architectural Institute of Korea, 28(9), pp. 13-20.
  22. Kong, J., and Jang, M. (2019). "Association Analysis of Convolution Layer, Kernel and Accuracy in CNN." Journal of the KIECS, 14(6), pp. 1153-1160.
  23. Kropp, C., Koch, C., and Konig, M. (2018). "Interior construction state recognition with 4D BIM registered image sequences." Automation in Construction, 86, pp. 11-32. https://doi.org/10.1016/j.autcon.2017.10.027
  24. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). "Gradient-Based Learning Applied to Document Recognition." Proceedings of the IEEE, pp. 1-46.
  25. McCulloch, C.E. (1997). "Maximum Likelihood Algorithms for Generalized Linear Mixed Models." Journal of the American Statistical Association, 92, pp. 162-170. https://doi.org/10.1080/01621459.1997.10473613
  26. Memon, Z., Abd.Majid, M., and Mustaffar, M. (2005). "An Automatic Project Progress Monitoring Model by Integrating Auto CAD and Digital Photos." International Conference on Computing in Civil Engineering, pp. 1-13.
  27. Redmon, J., Divvala, S., Girchick, R., and Fahadi, A. (2016). "You Only Look Once: Unified, Real-Time Object Detection." in CVPR, pp. 779-788.
  28. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelow, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). "Going deeper with convolutions." in CVPR, pp. 1-9.
  29. Simonyan, K., and Zisserman, A. (2015). "Very Deep Convolutional Networks for Large-Scale Image Recognition." International Conference on Learning Representations (ICLR), pp. 1-14.
  30. Son, H., Choi, H., Seong, H., and Kim, C. (2019). "Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks." Automation in Construction, 99, pp. 27-38. https://doi.org/10.1016/j.autcon.2018.11.033
  31. Trucco, E., and Kaka, P. (2004). "A framework for automatic progress assessment on construction sites using computer vision." International Journal of IT in Architecture Engineering and Construction, 2(2), pp. 147-164.
  32. Zhang, X., Bakis, N., Lukins, T., Ibrahim, Y., Wu, S., Kagioglou, M., Aouad, G., Kaka, A., and Trucco, E. (2009). "Automating Progress Measurement of Construction Projects." Automation in Construction, 18, pp. 294-301. https://doi.org/10.1016/j.autcon.2008.09.004