DOI QR코드

DOI QR Code

Microscopic analysis of metal matrix composites containing carbon Nanomaterials

  • Daeyoung Kim (School of Advanced Materials Engineering, Kookmin University) ;
  • Hye Jung Chang (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Hyunjoo Choi (School of Advanced Materials Engineering, Kookmin University)
  • Received : 2019.12.01
  • Accepted : 2019.12.23
  • Published : 2020.12.31

Abstract

Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites' mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.

Keywords

Acknowledgement

This study was supported by the Korea Institute of Science and Technology (KIST) Institutional Program (2 V06990).

References

  1. I. Alfonso, O. Navarro, J. Vargas, A. Beltran, C. Aguilar, G. Gonzalez, I.A. Figueroa, FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites. Compos. Struct. 127, 420-425 (2015)
  2. R.J. Arsenault, N. Shi, Dislocation generation due to differences between the coefficients of thermal expansion. Mater. Sci. Eng. 81, 175-187 (1986)
  3. S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal, A. Agarwal, Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol. 202, 5162-5169 (2008)
  4. S.R. Bakshi, V. Singh, S. Seal, A. Agarwal, Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol. 203, 1544-1554 (2009)
  5. H.J. Choi, Mechanical behavior of Al/C60-fullerenes Nanocomposites. Compos. Res. 26, 111-115 (2013)
  6. H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae, Reinforcement with carbon nanotubes in aluminum matrix composites. Scr. Mater. 59, 360-363 (2008)
  7. H.J. Choi, J.H. Shin, D.H. Bae, Self-assembled network structures in Al/C60 composites. Carbon 48, 3700-3707 (2010)
  8. H.J. Choi, J.H. Shin, D.H. Bae, The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Compos. Pt. A-Appl. Sci. Manuf. 43, 1061-1072 (2012)
  9. H.J. Choi, J.H. Shin, B.H. Min, J.S. Park, D.H. Bae, Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24, 2610-2616 (2009)
  10. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)
  11. T.H. Courtney, Mechanical Behavior of Materials, 2nd edn. (Waveland Press, Long Grove, 2005)
  12. H.L. Cox, The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72 (1952)
  13. L.H. Dai, Z. Ling, Y.L. Bai, Size-dependent inelastic behavior of particle-reinforced metal-matrix composites. Compos. Sci. Technol. 61, 1057-1063 (2001)
  14. A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder. Compos. Pt. A-Appl. Sci. Manuf. 38, 646-650 (2007)
  15. A.M.K. Esawi, M.A.E. Borady, Carbon nanotube-reinforced aluminium strips. Compos. Sci. Technol. 68, 486-492 (2008)
  16. A.M.K. Esawi, K. Morsi, A. Sayed, A. Abdel Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng. A 508, 167-173 (2009)
  17. N.A. Fleck, M.F. Ashby, J.W. Hutchinson, The role of geometrically necessary dislocations in giving material strengthening. Scr. Mater. 48, 179-183 (2003)
  18. R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53, 1159-1163 (2005)
  19. C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng. A 423, 153-156 (2006)
  20. C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Ductility improvement and fatigue studies in mg-CNT nanocomposites. Compos. Sci. Technol. 68, 1432-1439 (2008)
  21. J.C. Halpin Affdl, J.L. Kardos, The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16, 344-352 (1976)
  22. P.M. Hazzledine, Direct versus indirect dispersion hardening. Scripta Metall. Mater. 26, 57-58 (1992)
  23. H. Huang, M. Bush, G.V. Fisher, A numerical study of effect of grain boundaries on elastic and plastic properties in Nanocomposite materials. Key Eng. Mater. 1191, 127-131 (1996)
  24. H. Izadi, A.P. Gerlich, Distribution and stability of carbon nanotubes during multipass friction stir processing of carbon nanotube/aluminum composites. Carbon 50, 4744-4749 (2012)
  25. H.N. Jang, J.H. Kim, H. Kang, D.H. Bae, H.J. Chang, H.J. Choi, Reduced graphene oxide as a protection layer for Al. Appl. Surf. Sci. 407, 1-7 (2017)
  26. M. Kaminski, Sensitivity and randomness in homogenization of periodic fiberreinforced composites via the response function method. Int. J. Solids Struct. 46, 923-927 (2009)
  27. A.K. Keshri, K. Balani, S.R. Bakshi, V. Singh, T. Laha, S. Seal, A. Agarwal, Surf. Coat. Technol. 203, 2193-2201 (2009)
  28. D.Y. Kim, H. Kang, D.B. Bae, S.J. Nam, M. Quevedo-Lopez, H.J. Choi, Synthesis of reduced graphene oxide/aluminum nanocomposites via chemicalmechanical processes. J. Compos. Mater. 52, 3015-3025 (2018)
  29. D.Y. Kim, S.J. Nam, A.R. Roh, S.H. Yoo, M. Quevedo-Lopez, H.J. Choi, Effect of interfacial features on the mechanical and electrical properties of rGO/Al composites. J. Mater. Sci. 52, 12001-12012 (2017)
  30. H.S. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47, 570-577 (2009)
  31. T. Laha, Y. Chen, D. Lahiri, A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos. Pt. A-Appl. Sci. Manuf. 40, 589-594 (2009)
  32. K. Liu, L. Lu, F. Wang, W. Liang, Theoretical and experimental study on multiphase model of thermal conductivity of fiber reinforced concrete. Constr. Build. Mater. 148, 465-475 (2017)
  33. J.W. Luster, M. Thumann, R. Baumann, Mechanical properties of aluminium alloy 6061-Al2O3 composites. Mater. Sci. Technol. 9, 853-862 (1993)
  34. W.S. Miller, F.J. Humphreys, Strengthening mechanisms in particulate metal matrix composites. Scripta Metall. Mater. 25, 33-38 (1991)
  35. K. Morsi, A.M.K. Esawi, S. Lanka, A. Sayed, M. Taher, Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Compos. Pt. A-Appl. Sci. Manuf. 41, 322-326 (2010)
  36. I.L. Ngo, S.V. Prabhakar Vattikuti, C. Byon, A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. Int. J. Heat Mass Transf. 114, 727-734 (2017)
  37. E. Orowan, Zur Kristallplastizitat III. Z. Phys. 89, 634-659 (1934)
  38. M. Paramsothy, S.F. Hassan, N. Srikanth, M. Gupta, Adding carbon nanotubes and integrating with AA5052 aluminium alloy core to simultaneously enhance stiffness, strength and failure strain of AZ31 magnesium alloy. Compos. Pt. AAppl. Sci. Manuf. 40, 1490-1500 (2009)
  39. K.T. Park, E.J. Lavernia, F.A. Mohamed, High-temperature deformation of 6061 Al. Acta Metall. Mater. 42, 667-678 (1994)
  40. R. Perez-Bustamante, C.D. Gomez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez, S.A. Perez-Garcia, R. Martinez-Sanchez, Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng. A 502, 159-163 (2009)
  41. J. Phiri, L.S. Johansson, P. Gane, T. Maloney, A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Compos. Pt. B-Eng. 147, 104-113 (2018)
  42. F. Scarpa, S. Adhikari, A. Srikantha Phani, Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009)
  43. S.E. Shin, H.J. Choi, J.H. Shin, D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites. Carbon 82, 143-151 (2015a)
  44. S.E. Shin, H.J. Choi, J.Y. Hwang, D.H. Bae, Strengthening behavior of carbon/metal nanocomposites. Sci. Rep. 5, 16114 (2015b)
  45. I. Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 44, 1750-1756 (2009)
  46. L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, Deformation mechanism in high strength cu/Nb nanocomposites. Mater. Sci. Eng. A 309-310, 510-513 (2001)
  47. W. Tian, M.W. Fu, L. Qi, X. Chao, J. Liang, Interphase model for FE prediction of the effective thermal conductivity of the composites with imperfect interfaces. Int. J. Heat Mass Transf. 145, 118796 (2019)
  48. S.I. Torigoe, T. Horikoshi, A. Ogawa, T. Saito, T. Hamada, Study on evaluation method for PVA Fiber distribution in engineered Cementitious composite. J. Adv. Concr. Technol. 1, 265-268 (2003)
  49. H. Uozumi, K. Kobayashi, K. Nakanishi, T. Matsunaga, K. Shinozaki, H. Sakamoto, T. Tsukada, C. Masuda, M. Yoshida, Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater. Sci. Eng. A 495, 282-287 (2008)
  50. R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, J.M. Schoenung, The absence of thermal expansion mismatch strengthening in nanostructured metal-matrix composites. Scr. Mater. 61, 1052-1055 (2009)
  51. Z. Zhang, D.L. Chen, Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr. Mater. 54, 1321-1326 (2006)
  52. R. Zhong, H. Cong, P. Hou, Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848-851 (2003)