DOI QR코드

DOI QR Code

Evaluation Potential Antidiabetic Effects of Ferula latisecta in Streptozotocin-Induced Diabetic Rats

  • Javanshir, Sajad (Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences) ;
  • Soukhtanloo, Mohammad (Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences) ;
  • Jalili-Nik, Mohammad (Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences) ;
  • Yazdi, Amirali Jahani (Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences) ;
  • Amiri, Mohammad Sadegh (Department of Biology, Payame Noor University) ;
  • Ghorbani, Ahmad (Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences)
  • Received : 2018.04.04
  • Accepted : 2020.06.15
  • Published : 2020.09.30

Abstract

Objectives: The aim of the present work was to evaluate the possible beneficial effects of F. latisecta on blood glucose, lipids, and diabetes-related changes in the liver and kidney of streptozotocin-induced diabetic rats. Methods: Male Wistar rats were randomly allocated into four groups (n = 6): normal control rats, diabetic control rats, diabetic rats treated for 4 weeks with F. latisecta root (400 mg/kg/day), and diabetic rats treated with F. latisecta aerial parts (400 mg/kg/day). Results: Induction of diabetes significantly (p < 0.05) increased the levels of fasting blood glucose (FBG), triglyceride, total cholesterol, low-density lipoprotein (LDL), blood urea nitrogen (BUN), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Diabetes also increased (p < 0.05) oxidative stress in the kidney and liver (decrease of thiol and increase of superoxide dismutase). The root and aerial parts of F. latisecta significantly reduced the level of LDL (p < 0.05) and restored the content of thiol (p < 0.05) and superoxide dismutase (p < 0.01) in the kidney and liver. F. latisecta had no significant effect on the levels of FBG, BUN, AST, and ALT. The root of F. latisecta also reduced the serum level of total cholesterol (p < 0.05) and prevented the progression of hyperglycemia. Conclusion: These findings suggest that F. latisecta may improve diabetic dyslipidemia by reducing serum LDL. Further studies are needed to confirm our findings.

Keywords

References

  1. Egede LE, Ye X, Zheng D, Silverstein MD. The prevalence and pattern of complementary and alternative medicine use in individuals with diabetes. Diabetes Care. 2002;25(2):324-9. https://doi.org/10.2337/diacare.25.2.324
  2. Kim YS, Chun JH, Park JH, Kang CI. Status and associating factors of complementary and altemative medicine among Korean diabetic patients. J Korean Diabetes Assoc. 2000;24(1):78-89.
  3. Lee MS, Lee MS, Lim HJ, Moon SR. Survey of the use of complementary and alternative medicine among Korean diabetes mellitus patients. Pharmacoepidemiol Drug Saf. 2004;13(3):167-71. https://doi.org/10.1002/pds.877
  4. Ghorbani A. Best herbs for managing diabetes: a review of clinical studies. Braz J Pharm Sci. 2013;49(3):413-22. https://doi.org/10.1590/S1984-82502013000300003
  5. Hosseini A, Shafiee-Nick R, Ghorbani A. Pancreatic beta cell protection/regeneration with phytotherapy. Braz J Pharm Sci. 2015;51(1):1-16.
  6. Prabhakar PK, Doble M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med. 2011;17(8):563-74. https://doi.org/10.1007/s11655-011-0810-3
  7. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed Pharmacother. 2017;96:305-12. https://doi.org/10.1016/j.biopha.2017.10.001
  8. Afifi-Yazar FU, Kasabri V, Abu-Dahab R. Medicinal plants from Jordan in the treatment of diabetes: traditional uses vs. in vitro and in vivo evaluations--part 2. Planta Med. 2011;77(11):1210-20. https://doi.org/10.1055/s-0031-1279983
  9. Otoom SA, Al-Safi SA, Kerem ZK, Alkofahi A. The use of medicinal herbs by diabetic Jordanian patients. J Herb Pharmacother. 2006;6(2):31-41. https://doi.org/10.1080/J157v06n02_03
  10. Yaseen G, Ahmad M, Zafar M, Sultana S, Kayani S, Cetto AA, et al. Traditional management of diabetes in Pakistan: ethnobotanical investigation from Traditional Health Practitioners. J Ethnopharmacol. 2015;174:91-117. https://doi.org/10.1016/j.jep.2015.07.041
  11. Azizian H, Ebrahim Rezvani M, Esmaeilidehaj M, Bagheri SM. Anti-obesity, fat lowering and liver steatosis protective effects of ferula asafoetida gum in type 2 diabetic rats: possible involvement of leptin. Iran J Diabetes Obes. 2012;4(3):120-6.
  12. Abu-Zaiton AS. Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats. Pak J Biol Sci. 2010;13(2):97-100. https://doi.org/10.3923/pjbs.2010.97.100
  13. Hedaya MA, Hegazy SK, Salem KA, El-Kawy KSA. Evaluation of the clinical effect of Zallouh extract (Ferula hermonis) on diabetic patients with erectile dysfunction. J Pan Arab Leag Dermatol. 2007;18(1):17-26.
  14. Raafat K, El-Lakany A. Acute and subchronic in-vivo effects of Ferula hermonis L. and Sambucus nigra L. and their potential active isolates in a diabetic mouse model of neuropathic pain. BMC Complement Altern Med. 2015;15:257. https://doi.org/10.1186/s12906-015-0780-7
  15. Naguib YMA, inventor; Herbal compositions and methods for diabetes and weight loss management. United States patent US 6,780,440. 2004 Aug 24.
  16. Iranshahi M, Amanolahi F, Schneider B. New sesquiterpene coumarin from the roots of Ferula latisecta. Avicenna J Phytomed. 2012;2(3):133-8.
  17. Mozaffarian V. Identification of medicinal and aromatic plants of Iran. Tehran: Farhang Moaser Publishers; 2013. 1350 p.
  18. Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: a review. Avicenna J Phytomed. 2016;6(6):621-35.
  19. Habibi Z, Salehi P, Yousefi M, Hejazi Y, Laleh A, Mozaffarian V, et al. Chemical composition and antimicrobial activity of the essential oils of Ferula latisecta and Mozaffariania insignis from Iran. Chem Nat Compd. 2006;42(6):689-92. https://doi.org/10.1007/s10600-006-0253-9
  20. Iranshahi M, Hassanzadeh-Khayat M, Bazzaz BSF, Sabeti Z, Enayati F. High content of polysulphides in the volatile oil of Ferula latisecta Rech. F. et Aell. fruits and antimicrobial activity of the oil. J Essent Oil Res. 2008;20(2):183-5. https://doi.org/10.1080/10412905.2008.9699986
  21. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22(3):659-61. https://doi.org/10.1096/fj.07-9574lsf
  22. Jalili-Nik M, Soukhtanloo M, Javanshir S, Jahani Yazdi A, Esmaeilizadeh M, Jafarian AH, et al. Effects of ethanolic extract of Ferula gummosa oleo-resin in a rat model of streptozotocininduced diabetes. Res Pharm Sci. 2019;14(2):138-45. https://doi.org/10.4103/1735-5362.253361
  23. Hosseini A, Mollazadeh H, Amiri MS, Sadeghnia HR, Ghorbani A. Effects of a standardized extract of Rheum turkestanicum Janischew root on diabetic changes in the kidney, liver and heart of streptozotocin-induced diabetic rats. Biomed Pharmacother. 2017;86:605-11. https://doi.org/10.1016/j.biopha.2016.12.059
  24. Madesh M, Balasubramanian KA. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J Biochem Biophys. 1998;35(3):184-8.
  25. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46.
  26. Okon UA, Owo DU, Udokang NE, Udobang JA, Ekpenyong CE. Oral administration of aqueous leaf extract of Ocimum gratissimum ameliorates polyphagia, polydipsia andweight loss in streptozotocin-induced diabetic rats. Am J Med Med Sci. 2012;2(3):45-9. https://doi.org/10.5923/j.ajmms.20120203.04
  27. de Moura Barbosa H, Amaral D, do Nascimento JN, Machado DC, de Sousa Araujo TA, de Albuquerque UP, et al. Spondias tuberosa inner bark extract exert antidiabetic effects in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2018;227:248-57. https://doi.org/10.1016/j.jep.2018.08.038
  28. Viljoen A, Joshi S, Wierzbicki AS. Diabetic dyslipidemia and risk of cardiovascular disease. In: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ, editors. Textbook of diabetes. 5th ed. Chichester: Wiley Blackwell; 2017. p. 643-52.
  29. Dake AW, Sora ND. Diabetic dyslipidemia review: an update on current concepts and management guidelines of diabetic dyslipidemia. Am J Med Sci. 2016;351(4):361-5. https://doi.org/10.1016/j.amjms.2016.01.020
  30. Vijayaraghavan K. Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis. 2010;9(1):144. https://doi.org/10.1186/1476-511X-9-144
  31. Karalis DG. The role of lipid-lowering therapy in preventing coronary heart disease in patients with type 2 diabetes. Clin Cardiol. 2008;31(6):241-8. https://doi.org/10.1002/clc.20226
  32. Shafiee-Nick R, Ghorbani A, Vafaee Bagheri F, Rakhshandeh H. Chronic administration of a combination of six herbs inhibits the progression of hyperglycemia and decreases serum lipids and aspartate amino transferase activity in diabetic rats. Adv Pharmacol Sci. 2012;2012:789796. https://doi.org/10.1155/2012/789796
  33. Tashakori-Sabzevar F, Ramezani M, Hosseinzadeh H, Parizadeh SM, Movassaghi AR, Ghorbani A, et al. Protective and hypoglycemic effects of celery seed on streptozotocin-induced diabetic rats: experimental and histopathological evaluation. Acta Diabetol. 2016;53(4):609-19. https://doi.org/10.1007/s00592-016-0842-4
  34. Forlani G, Di Bonito P, Mannucci E, Capaldo B, Genovese S, Orrasch M, et al. Prevalence of elevated liver enzymes in Type 2 diabetes mellitus and its association with the metabolic syndrome. J Endocrinol Invest. 2008;31(2):146-52. https://doi.org/10.1007/BF03345581
  35. Malenica M, Prnjavorac B, Causevic A, Dujic T, Bego T, Semiz S. Use of databases for early recognition of risk of diabetic complication by analysis of liver enzymes in Type 2 diabetes mellitus. Acta Inform Med. 2016;24(2):90-3. https://doi.org/10.5455/aim.2016.24.90-93
  36. Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev. 2006;22(6):437-43. https://doi.org/10.1002/dmrr.666
  37. Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(6):1889-95. https://doi.org/10.2337/diabetes.51.6.1889