DOI QR코드

DOI QR Code

딥러닝 기반 소나무 재선충 피해목 탐색

Searching the Damaged Pine Trees from Wilt Disease Based on Deep Learning

  • 장예예 (전북대학교 전자.정보공학부) ;
  • 유첩 (전북대학교 전자.정보공학부) ;
  • 김병준 (전북대학교 전자.정보공학부) ;
  • 선주남 (한국임업진흥원 방제드론실) ;
  • 이준환 (전북대학교 컴퓨터공학부)
  • 투고 : 2020.07.08
  • 심사 : 2020.09.05
  • 발행 : 2020.09.30

초록

소나무 재선충은 한국과 일본, 중국을 포함한 동아시아 지역의 소나무산림에 막대한 피해를 주는 원인이며, 피해목의 조기 발견과 제거는 재선충 확산을 막는 효과적인 방법이다. 본 논문에서는 드론으로 촬영되고 처리된 RGB 정사영상을 딥러닝 분류에 의한 재선충 피해목 탐색방법을 제안한다. 제안된 방법은 학습영상 데이터가 많지 않다는 가정아래 ResNet18을 백본으로 하는 패치기반의 분류기를 구성하고 RGB 정사영상을 분류하고 그 결과를 heatmap 형태로 만든다. 제작된 정사영상의 heat map는 재선충 피해목의 분포를 알아내고 확산해가는 모습을 관찰할 수 있게 하며, 재선충 피해목 지역의 RGB 분포 특징을 추출해낼 수도 있다. 본 연구의 패치기반 분류기 성능은 94.7%의 정확도를 나타내었다.

Pine wilt disease is one of the reasons that results in huge damage on pine trees in east Asia including Korea, Japan, and China, and early finding and removing the diseased trees is an efficient way to prevent the forest from wide spreading. This paper proposes a searching method of the damaged pine trees from wilt disease in ortho-images corrected from RGB images, which are captured by unmanned aviation vehicles. The proposed method constructs patch-based classifier using ResNet18 backbone network, classifies the RGB ortho-image patches, and make the results as a heat map. The heat map can be used to find the distribution of diseased pine trees, to show the trend of spreading disease, and to extract the RGB distribution of the diseased areas in the image. The classifier in the work shows 94.7% of accuracy.

키워드

참고문헌

  1. 곽태홍외 2인, "CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석," 대한원격탐사학회지, 제35권, 제6호, 959-971, 2019 https://doi.org/10.7780/kjrs.2019.35.6.1.7
  2. Milioto, A., P. Lottes, and C. Stachniss, "Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs," IEEE International Conference on Robotics and Automation (ICRA), 2018.
  3. 임업서비스 전문기관 한국임업진흥원, https://www.kofpi.or.kr/intro/bizGuide_08_02.do (accessed June. 21, 2020)
  4. 김문일 외 5인, "휴대용 근적외선 카메라로부터 얻어진 DI(Detection Index)를 이용한 소나무 재선충피해목의 조기감별," 한국산림과학회지, 제100권, 제3호, 374-381쪽, 2011
  5. 손민호, 이우균, 이승호, 조현국, 이준학, "공간통계학적 방법에 의한 소나무 재선충 피해의 자연적 확산유형분석," 한국임학회지, 제95권 제3호, 240-249쪽, 2006
  6. 국립산림과학원, 산림병해충 발생예찰조사연보, 2017
  7. 조명희외 3인, "고해상도 IKNOS 영상을 활용한 소나무재선충 피해지역 추출기법," 한국지리정보학회지, 제4권, 제4호, 72-78쪽, 2001
  8. 한국임업진흥원, 드론.AI 기술로 소나무 재선충병관리(2019), https://www.mk.co.kr/news/special-edition/view/2019/08/670046/ (accessed June. 19, 2020)
  9. Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning," IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2009. https://doi.org/10.1109/TKDE.2009.191
  10. He K, Zhang X, Ren S, et al, "Deep residual learning for image recognition," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
  11. Shorten C, Khoshgoftaar T M, "A survey on image data augmentation for deep learning," Journal of Big Data, 6(1), 60, 2019. https://doi.org/10.1186/s40537-019-0197-0
  12. Paszke A, Gross S, Massa F, et al. Pytorch, "An imperative style, high-performance deep learning library," Advances in neural information processing systems, pp. 8026-8037, 2019.
  13. DiFranco M D, O'Hurley G, Kay E W, et al.,"Ensemble based system for whole-slide prostate cancer probability mapping using color texture features," Computerized medical imaging and graphics, 35(7-8), pp. 629-645, 2011. https://doi.org/10.1016/j.compmedimag.2010.12.005
  14. 김서정, 김형석, "Multi-Tasking U-net 기반 파프리카 병해충 진단," 스마트미디어저널, 제9권 제1호, 16-22쪽, 2020년 03월 https://doi.org/10.30693/SMJ.2020.9.1.16
  15. 박선,김종원, "오픈 소스 기반의 딥러닝을 이용한 적조생물 이미지 분류," 스마트미디어저널, 제7권, 제2호, 34-39쪽, 2018년 6월 https://doi.org/10.30693/SMJ.2018.7.2.34
  16. 김사웅, "무인항공기 기반 빅데이터 처리 시스템의 프로토타입 설계," 스마트미디어저널, 제5권, 제2호, 51-58쪽, 2016년 6월