DOI QR코드

DOI QR Code

Removal of Heavy Metals from Wastewater using α-Fe2O3 Nanocrystals

  • Tsedenbal, Bulgan (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Ji Eun (School of Materials Science and Engineering, Changwon National University) ;
  • Huh, Seok Hwan (School of Mechatronics Convergence Engineerings, Changwon National University,) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Chan Gyu (School of Materials Science and Engineering, Changwon National University)
  • Received : 2020.06.26
  • Accepted : 2020.08.21
  • Published : 2020.09.27

Abstract

In this work, α-Fe2O3 nanocrystals are synthesized by co-precipitation method and used as adsorbent to remove Cr6+, Cd2+, and Pb2+ from wastewater at room temperature. The prepared sample is evaluated by XRD, BET surface area, and FESEM for structural and morphological characteristics. XRD patterns confirm the formation of a pure hematite structure of average particle size of ~ 40 nm, which is further supported by the FESEM images of the nanocrystals. The nanocrystals are found to have BET specific surface area of ~ 39.18 m2 g-1. Adsorption experiments are carried out for the different values of pH of the solutions, contact time, and initial concentration of metal ions. High efficiency Cr6+, Cd2+, and Pb2+ removal occur at pH 3, 7, and 5.5, respectively. Equilibrium study reveals that the heavy metal ion adsorption of the α-Fe2O3 nanocrystals followed Langmuir and Freundlich isotherm models. The Cr6+, Cd2+, and Pb2+ adsorption equilibrium data are best fitted to the Langmuir model. The maximum adsorption capacities of α-Fe2O3 nanocrystals related to Cr6+, Cd2+, and Pb2+ are found to be 15.15, 11.63, and 20 mg g-1, respectively. These results clearly suggest that the synthesized α-Fe2O3 nanocrystals can be considered as potential nano-adsorbents for future environmental and health related applications.

Keywords

References

  1. K. M. S. Surchi, Int. J. Chem., 3, 103 (2011).
  2. F. Rozada, M. Otero, A. Moran and A. I. Garsia, Bioresour. Technol., 99, 6332 (2008). https://doi.org/10.1016/j.biortech.2007.12.015
  3. Y. Bagbi, A. Sarswat, D. Mohan, A. Pandey and P. R. Solanki, Sci. Rep., 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  4. P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu and H. He, J. Hazard. Mater., 173, 614 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.129
  5. M. A. Ahmed, S. M. Ali, S. I. El-Dek and A. Galal, Mater. Sci. Eng., B, 178, 744 (2013). https://doi.org/10.1016/j.mseb.2013.03.011
  6. V. M. Boddu, K. Abburi, J. L. Talbott and E. D. Smith, Environ. Sci. Technol. Lett., 37, 4449 (2003). https://doi.org/10.1021/es021013a
  7. J. T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shiple, W. Yu, J. Falkner, A. Kan, M. Tomson and V. L. Colvin, Sci. Technol. Adv. Mater., 8, 71 (2007). https://doi.org/10.1088/1468-6996/8/1-2/A13
  8. Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi and A. Montiel, J. Hazard. Mater., 156, 412 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.036
  9. G. Vijayakumar, R. Tamilarasan and M. Dharmendirakumar, J. Mater. Environ. Sci., 3, 157 (2012).
  10. W. Jiang, M. Pelaez, D. D. Dionysiou, M. H. Entezari, D. Tsoutsou and K. O'Shea, Chem. Eng. J., 222, 527 (2013). https://doi.org/10.1016/j.cej.2013.02.049
  11. H. Karami, Chem. Eng. J., 219, 209 (2013). https://doi.org/10.1016/j.cej.2013.01.022
  12. X. L. Fang, C. Chen, M. S. Jin, Q. Kuang, Z. X. Xie, S. Y. Xie, R.B. Huang and L. S. Zheng, J. Mater. Chem., 19, 6154 (2009). https://doi.org/10.1039/b905034e
  13. S. Rajput, C. U. Pittman Jr and D. Mohan, J. Colloid Interface Sci., 468, 334 (2016). https://doi.org/10.1016/j.jcis.2015.12.008
  14. Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren and L. Zuo, Sep. Purif. Technol., 68, 312 (2009). https://doi.org/10.1016/j.seppur.2009.05.020
  15. A. Roy, J. Bhattacharya, Chem. Eng. J., 211-212, 493 (2012). https://doi.org/10.1016/j.cej.2012.09.097
  16. X. L. Cheng, J. S. Jiang, C. Y. Jin, C. C. Lin, Y. Zeng and Q. H. Zhang, Chem. Eng. J., 236, 139 (2014). https://doi.org/10.1016/j.cej.2013.09.089
  17. H. Liang, B. Xu and Z. Wang, Mater. Chem. Phys., 141, 727 (2013). https://doi.org/10.1016/j.matchemphys.2013.05.070
  18. B. Tsedenbal, M. S. Anwar, I. Hussain and B. H. Koo, J. Nanosci. Nanotechnol., 17, 7682 (2017).
  19. S. Mahdavi, M. Jalali and A. Afkhami, J. Nanopart. Res. 14, 846 (2012). https://doi.org/10.1007/s11051-012-0846-0
  20. B. E. Reed, M. R. Matsumoto, Sep. Sci. Technol., 28, 2179 (1993). https://doi.org/10.1080/01496399308016742
  21. L. Giraldo, A. Erto and J. C. Moreno-Pirajan, Adsorption, 19, 465 (2013). https://doi.org/10.1007/s10450-012-9468-1
  22. D. Fialova, M. Kremplova, L. Melichar, P. Kopel, D. Hynek, V. Adam and R. Kizek, Materials, 7, 2242 (2014). https://doi.org/10.3390/ma7032242
  23. D. He, Y. Xiao, D. Liang, H. Zhou, L. Du and L. Liu, Mater. Sci. Appl., 2, 215 (2011). https://doi.org/10.4236/msa.2011.24027
  24. S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang and W. Zhou, J. Phys. Chem. C, 111, 10217 (2007). https://doi.org/10.1021/jp0719661