DOI QR코드

DOI QR Code

Effect of Post-clad Heat Treatment on Microstructures and Mechanical Properties of Cu-NiCrBSi Dissimilar Laser Clads

후열처리에 따른 Cu-NiCrBSi 이종 레이저 클래드부의 미세조직 및 기계적 성질 변화

  • Kim, Kyeong-Min (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Jeong, Ye-Seon (Department of Nano Materials Science and Engineering, Kyungnam University) ;
  • Sim, Ahjin (Advanced Machine Tool Technology Team, Doosan Machine Tools) ;
  • Park, Wonah (Department of Mechanical and Automotive Engineering, Kyungsung University) ;
  • Park, Changkyoo (Laser and Electron Beam Application Department, Korea Institute of Machinery and Materials) ;
  • Chun, Eun-Joon (Department of Nano Materials Science and Engineering, Kyungnam University)
  • 김경민 (경남대학교 나노신소재공학과) ;
  • 정예선 (경남대학교 나노신소재공학과) ;
  • 심아진 (두산공작기계 선행기술팀) ;
  • 박원아 (경성대학교 기계자동차공학전공) ;
  • 박창규 (한국기계연구원 광응용기계연구실) ;
  • 천은준 (경남대학교 나노신소재공학과)
  • Received : 2020.07.13
  • Accepted : 2020.08.13
  • Published : 2020.09.27

Abstract

For surface hardening of a continuous casting mold component, a fundamental metallurgical investigation on dissimilar laser clads (Cu-NiCrBSi) is performed. In particular, variation behavior of microstructures and mechanical properties (hardness and wear resistance) of dissimilar clads during long-term service is clarified by performing high-temperature post-clad heat treatment (temperature range: 500 ~ 1,000 ℃ and isothermal holding time: 20 ~ 500 min). The microstructures of clad metals (as-clads) consist of fine dendrite morphologies and severe microsegregations of the alloying elements (Cr and Si); substrate material (Cu) is clearly confirmed. During the post-clad heat treatment, the microsegregations are totally homogenized, and secondary phases (Cr-based borides and carbides) precipitated during the short-term heat treatment are also almost dissolved, especially at the heat treatment conditions of 950 ℃ for 500 min. Owing to these microstructural homogenization behaviors, an opposite tendency of the surface mechanical properties can be confirmed. In other words, the wear resistance (wear rate) improves from 4.1 × 10-2 ㎣/Nm (as-clad condition) to 1.4 × 10-2 ㎣/Nm (heat-treated at 950 ℃ for 500 min), whereas the hardness decreases from 453 HV (as-clad condition) to 142 HV (heat-treated at 950 ℃ for 500 min).

Keywords

References

  1. E. J. Chun, Korean J. Met. Mater., 58, 247 (2020). https://doi.org/10.3365/kjmm.2020.58.4.247
  2. C. Park, A. Sim, S. Ahn, H. Kang and E. J. Chun, Surf. Coat. Technol., 377, 124852 (2019). https://doi.org/10.1016/j.surfcoat.2019.08.006
  3. C. Park, J. Kim, A. Sim, H. Sohn, H. Jang and E. J. Chun, Wear, 434, 202961 (2019).
  4. A. Sim, C. Park, N. Kang, Y. Kim and E. J. Chun, Opt. Laser Technol., 116, 305 (2019). https://doi.org/10.1016/j.optlastec.2019.03.040
  5. E. J. Chun, C. Park and W. Park, Korean J. Met. Mater., 58, 32 (2020). https://doi.org/10.3365/kjmm.2020.58.1.32
  6. Q. Hongchao, Appl. Surf. Sci., 351, 524 (2015). https://doi.org/10.1016/j.apsusc.2015.05.098
  7. J. S. Hoppius, L. M. Kukreja, M. Knyazeva, F. Pohl, F. Walther, A. Ostendorf and E. L. Gurevich, Appl. Surf. Sci., 435, 1120 (2018). https://doi.org/10.1016/j.apsusc.2017.11.145
  8. K. Elango, J. S. Hoppius, L. M. Kukreja, A. Ostendorf and E. L. Gurevich, Surf. Coat. Technol., 397, 125988 (2020). https://doi.org/10.1016/j.surfcoat.2020.125988
  9. C. Park, D. Jung, E. J. Chun, S. Ahn, H. Jang and Y. J. Kim, Appl. Surf. Sci., 514, 145917 (2020). https://doi.org/10.1016/j.apsusc.2020.145917
  10. T. E. Abioye, D. G. McCartney and A. T. Clare, J. Mater. Process. Tech., 217, 232 (2015). https://doi.org/10.1016/j.jmatprotec.2014.10.024
  11. G. Bidron, A. Doghri, T. Malot, F. Fournier-dit-Chabert. M. Thomas and P. Peyre, J. Mater. Process. Tech., 277, 116461 (2020). https://doi.org/10.1016/j.jmatprotec.2019.116461
  12. E. J. Chun, H. Baba, K. Nishimoto and K. Saida, Weld. Int., 30, 79 (2016). https://doi.org/10.1080/09507116.2014.921086
  13. E. J. Chun, K. Nishimoto and K. Saida, Weld. World, 60, 217 (2016). https://doi.org/10.1007/s40194-016-0293-0
  14. C. Park, J. H. Lee, N. Kang and E. J. Chun, Coatings, 10, 433 (2020). https://doi.org/10.3390/coatings10050433
  15. C. Park and E. J. Chun, Metals, 10, 548 (2020). https://doi.org/10.3390/met10040548
  16. H. Hamatani, Y. Ichiyama and J. Kobayashi, Sci. Technol. Adv. Mater., 3, 319 (2002). https://doi.org/10.1016/S1468-6996(02)00043-8
  17. S. Matthews and B. J. James, J. Therm. Spray Technol., 19, 1267 (2010). https://doi.org/10.1007/s11666-010-9518-8
  18. S. Barella, A. Gruttadauria, C. Mapelli and D. Mombelli, Eng. Fail. Anal., 36, 432 (2014). https://doi.org/10.1016/j.engfailanal.2013.11.004
  19. H. Chen, L. Su, G. Wang, S. Wan, L. Zhang and Z. Luo, Int. J. Therm. Sci., 83, 80 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.04.012
  20. T. H. Kang, K. S. Kim, S. H. Park and K. A. Lee, Korean J. Met. Mater., 56, 423 (2018). https://doi.org/10.3365/kjmm.2018.56.6.423
  21. J. N. DuPont, J. C. Lippold and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, pp.47-156, New Jersey, John Wiley & Sons, Inc. (2009).