DOI QR코드

DOI QR Code

Synthesis of Iodine Substituted Polycarbosilane by High Temperature and Pressure Reaction Process and Properties Characterization

고온, 고압에서의 요오드 치환 Polycarbosilane의 합성 및 특성

  • Byen, Ji Cheol (Department of Materials Science Engineering, Paichai University) ;
  • Sharbidre, Rakesh Sadanand (Department of Materials Science Engineering, Paichai University) ;
  • Kim, Yoon Ho (Department of Materials Science Engineering, Paichai University) ;
  • Park, Seung Min (Department of Materials Science Engineering, Paichai University) ;
  • Ko, Myeong Seok (Department of Materials Science Engineering, Paichai University) ;
  • Min, Hyo Jin (Department of Materials Science Engineering, Paichai University) ;
  • Lee, Na young (Department of Materials Science Engineering, Paichai University) ;
  • Ryu, Jae-Kyung (Deptartment of Dental Technology and Science, Shinhan University) ;
  • Kim, Taik-Nam (Department of Materials Science Engineering, Paichai University)
  • Received : 2020.05.26
  • Accepted : 2020.08.30
  • Published : 2020.09.27

Abstract

SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.

Keywords

References

  1. K. J. Kim, Industry Trends Report 2012-5, p. 1-19, KICET (2012).
  2. J. D. Lee, Ceramist, 14, 51 (2011).
  3. G. P. Moharana, S. K. Singh, P. D. Babu and H. K. Narayanan, J. Alloys Compd., 765, 314 (2018). https://doi.org/10.1016/j.jallcom.2018.06.096
  4. L. Sun and J. Hu, Comput. Condens. Matter., 16, e00323 (2018). https://doi.org/10.1016/j.cocom.2018.e00323
  5. B. Kuang, Y. Dou, Z. Wang, M. Ning, H. Jin, D. Guo, M. Cao, X. Fang, Y. Zhao and J. Li, Appl. Surf. Sci., 445, 383 (2018). https://doi.org/10.1016/j.apsusc.2018.03.203
  6. Y. Wang, P. Xiao, W. Zhou, H. Luo, Z. Li, W. Chen and Y. Li, Ceram. Int., 44, 3606 (2018). https://doi.org/10.1016/j.ceramint.2017.11.101
  7. S. Yajima, Y. Hasegawa, J. Hayashi and M. Limura, J. Mater. Sci., 13, 2569 (1978). https://doi.org/10.1007/PL00020149
  8. L. V.Interrante, K. Moraes, Q. Liu, N. Lu, A. Puerta and L. G. Sneddon, Pure Appl. Chem., 74, 2111 (2002). https://doi.org/10.1351/pac200274112111
  9. A. Herzog, M. Thunemann, U. Vogt and O. Beffort, J. Eur. Ceram. Soc., 25, 187 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.07.015
  10. A. R. Bunsell and A. Piant, J. Mater. Sci., 41, 823 (2006). https://doi.org/10.1007/s10853-006-6566-z
  11. X. Cheng, Z. Xie, J. Xiao and Y. Song, J. Inorg. Organomet. Polym., 15, 253 (2005). https://doi.org/10.1007/s10904-004-5542-9
  12. X. Cheng, Z. Xie, Y. Song, J. Xiao and Y. Wang, J. Appl. Polym. Sci., 99, 1188 (2005). https://doi.org/10.1002/app.22594
  13. Y. Huang, L. Liu, S. Zhang, H. Yu and J. Yang, Eur. Polym. J., 98, 347 (2018). https://doi.org/10.1016/j.eurpolymj.2017.11.033
  14. C. Zheng, B. Zhu, X. Li and Y. Wang, Acta Polym. Sin, 1, 246 (2004).
  15. Y. Gou, H. Wang, K. Jian, C. Shao and X. Wang, J. Eur. Ceram. Soc., 37, 517 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.09.023
  16. S. M. Dong, G. Chollon, C. Labrugere, M. Lahaye, A. Guette, J. L. Bruneel, M. Couzi, R. Naslain and D. L. Jiang, J. Mater. Sci., 36, 2371 (2017). https://doi.org/10.1023/A:1017988827616
  17. Y. Gou, H. Wang, K. Jian, Y. Wang, J. Wang, Y. Song and Z. Xie, J. Mater. Sci., 51, 8240 (2016). https://doi.org/10.1007/s10853-016-0101-7
  18. P. Fitriani, A. S. Sharma and D.-H. Yoon, J. Nucl. Mater., 503, 226 (2018). https://doi.org/10.1016/j.jnucmat.2018.02.045
  19. H.-J. Yeom, Y.-W. Kim and K. J. Kim, J. Eur. Ceram. Soc., 35, 77 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.011
  20. P. Zhao, Q. Li, R. Yi, Z. Wang, L. Lu, X. Cheng and S. Dong, J. Alloys Compd., 748, 36 (2018). https://doi.org/10.1016/j.jallcom.2018.03.122
  21. Y.-W. Kim, S.-H. Lee, T. Nishimura, M. Mitomo, Acta Mater., 53, 4701 (2005). https://doi.org/10.1016/j.actamat.2005.07.002
  22. W. Cui, K. Wang, F. Xia and P. Wang, Ceram. Int., 44, 5500 (2018). https://doi.org/10.1016/j.ceramint.2017.12.189
  23. J. C. G. Martin, J. Blahins, U. Gross, T. Ingham, A. Goddard, A. S. Mahajan, A. Ubelis and A. Saiz-Lopez, Atmos. Meas. Tech., 4, 29 (2011). https://doi.org/10.5194/amt-4-29-2011
  24. H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou, X. Fang, H. Jin, W. Wang and J. Yuan, Adv. Opt. Mater., 2, 199 (2014). https://doi.org/10.1002/adom.201470013
  25. W. Duan, X. Yin, Q. Li, X. Liu, L. Cheng and L. Zhang, J. Eur. Ceram. Soc., 34, 257 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.08.029
  26. J. Yuan, H.-J. Yang, Z.-L. Hou, W.-L. Song, H. Xu, Y.-Q. Kang, H.-B. Jin, X.-Y. Fang and M.-S. Cao, Powder Technol., 237, 309 (2013). https://doi.org/10.1016/j.powtec.2012.12.020
  27. J. Kuang, P. Jiang, F. Ran and W. Cao, J. Alloys Compd., 687, 227 (2016). https://doi.org/10.1016/j.jallcom.2016.06.168
  28. C.-H. Peng, P. S. Chen and C.-C. Chang, Ceram. Int., 40, 47(2014). https://doi.org/10.1016/j.ceramint.2013.05.101