DOI QR코드

DOI QR Code

THE ZEROTH-ORDER GENERAL RANDIĆ INDEX OF GRAPHS WITH A GIVEN CLIQUE NUMBER

  • Du, Jianwei (School of Science, North University of China) ;
  • Shao, Yanling (School of Science, North University of China) ;
  • Sun, Xiaoling (School of Science, North University of China)
  • Received : 2019.01.29
  • Accepted : 2020.08.05
  • Published : 2020.09.30

Abstract

The zeroth-order general Randić index 0Rα(G) of the graph G is defined as ∑u∈V(G)d(u)α, where d(u) is the degree of vertex u and α is an arbitrary real number. In this paper, the maximum value of zeroth-order general Randić index on the graphs of order n with a given clique number is presented for any α ≠ 0, 1 and α ∉ (2, 2n-1], where n = |V (G)|. The minimum value of zeroth-order general Randić index on the graphs with a given clique number is also obtained for any α ≠ 0, 1. Furthermore, the corresponding extremal graphs are characterized.

Keywords

References

  1. H. Ahmeda, A. A. Bhattia and A. Ali, Zeroth-order general Randic index of cactus graphs, AKCE Int. J. Graphs Comb. (2018), https://doi.org/10.1016/j.akcej.2018.01.006.
  2. A. Ali, A. A. Bhatti and Z. Raza, A note on the zeroth-order general Randic index of cacti and polyomino chains, Iranian J. Math. Chem. 5 (2014), 143-152.
  3. B. Bollobas and P. Erdos, Graphs of extremal weights, Ars Combin. 50 (1998), 225-233.
  4. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
  5. S. Chen and H. Deng, Extremal (n, n + 1)-graphs with respected to zeroth-order general Randic index, J. Math. Chem. 42 (2007), 555-564. https://doi.org/10.1007/s10910-006-9131-8
  6. H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007), 597-616.
  7. P. Erdos, On the graph theorem of Turan, Mat. Lapok 21 (1970), 249-251.
  8. I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. III. Total ${\pi}$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538. https://doi.org/10.1016/0009-2614(72)85099-1
  9. Y. Hu, X. Li, Y. Shi and T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randic index, Discrete Appl. Math. 155 (2007), 1044-1054. https://doi.org/10.1016/j.dam.2006.11.008
  10. Y. Hu, X. Li, Y. Shi, T. Xu and I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randic index, MATCH Commun. Math. Comput. Chem. 54 (2005), 425-434.
  11. H. Hua and H. Deng, On unicycle graphs with maximum and minimum zeroth-order genenal Randic index, J. Math. Chem. 41 (2007), 173-181. https://doi.org/10.1007/s10910-006-9067-z
  12. L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
  13. L. B. Kier and L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Research Studies Press, Wiley, Chichester, UK, 1986.
  14. L. B. Kier and L. H. Hall, The nature of structure-activity relationships and their relation to molecular connectivity, Europ. J. Med. Chem. 12 (1977), 307-312.
  15. F. Li and M. Lu, On the zeroth-order general Randic index of unicycle graphs with k pendant vertices, Ars Combin. 109 (2013), 229-237.
  16. S. Li and M. Zhang, Sharp bounds on the zeroth-order general Randic indices of conjugated bicyclic graphs, Math. Comput. Model. 53 (2011), 1990-2004. https://doi.org/10.1016/j.mcm.2011.01.030
  17. X. Li and Y. Shi, A survey on the Randic index, MATCH Commun. Math. Comput. Chem. 59 (2008), 127-156.
  18. X. Li and Y. Shi, (n,m)-graphs with maximum zeroth-order general Randic index for ${\alpha}\,{\in}$ (-1,0), MATCH Commun. Math. Comput. Chem. 62 (2009), 163-170.
  19. X. Li and H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004), 57-62.
  20. X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 195-208.
  21. X. Pan and S. Liu, Conjugated tricyclic graphs with the maximum zeroth-order general Randic index, J. Appl. Math. Comput. 39 (2012), 511-521. https://doi.org/10.1007/s12190-012-0538-z
  22. L. Pavlovic, Maximal value of the zeroth-order Randic index, Discr. Appl. Math. 127 (2003), 615-626. https://doi.org/10.1016/S0166-218X(02)00392-X
  23. M. Randic, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609-6615. https://doi.org/10.1021/ja00856a001
  24. G. Su, J. Tu and K. C. Das, Graphs with fixed number of pendent vertices and minimal zeroth-order general Randic index, Appl. Math. Comput. 270 (2015), 705-710. https://doi.org/10.1016/j.amc.2015.08.060
  25. G. Su, L. Xiong and X. Su, Maximally edge-connected graphs and zeroth-order general Randic index for 0 < ${\alpha}$ < 1, Discrete Appl. Math. 167 (2014), 261-268. https://doi.org/10.1016/j.dam.2013.11.016
  26. G. Su, L. Xiong, X. Su and G. Li, Maximally edge-connected graphs and zeroth-order general Randic index for ${\alpha}\,{\leq}$ -1, J. Comb. Optim. 31 (2016), 182-195. https://doi.org/10.1007/s10878-014-9728-y
  27. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
  28. R. Wu, H. Chen and H. Deng, On the monotonicity of topological indices and the connectivity of a graph, Appl. Math. Comput. 298 (2017), 188-200. https://doi.org/10.1016/j.amc.2016.11.017
  29. K. Xu, The Zagreb indices of graphs with a given clique number, Appl. Math. Lett. 24 (2011), 1026-1030. https://doi.org/10.1016/j.aml.2011.01.034
  30. S. Zhang and H. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006), 427-438.
  31. S. Zhang, W. Wang and T. C. E. Cheng, Bicyclic graphs with the first three smallest and largest values of the first general Zagreb Index, MATCH Commun. Math. Comput. Chem. 56 (2006), 579-592.