A NOTE ON THE BOUNDARY BEHAVIOUR OF THE SQUEEZING FUNCTION AND FRIDMAN INVARIANT

HYESEON KIM, ANH DUC MAI, THI LAN HUONG NGUYEN, AND VAN THU NINH

Abstract. Let Ω be a domain in \mathbb{C}^n. Suppose that $\partial \Omega$ is smooth pseudoconvex of D’Angelo finite type near a boundary point $\xi_0 \in \partial \Omega$ and the Levi form has corank at most 1 at ξ_0. Our goal is to show that if the squeezing function $s_{\Omega}(\eta_j)$ tends to 1 or the Fridman invariant $h_{\Omega}(\eta_j)$ tends to 0 for some sequence $\{\eta_j\} \subset \Omega$ converging to ξ_0, then this point must be strongly pseudoconvex.

1. Introduction and the main result

The study of biholomorphic invariants has been attracted much attention in the complex differential geometry to enhance the comprehension and application of biholomorphic classification of complex domains. The squeezing function, the Fridman invariant, and the quotient invariant by using the Carathéodory and Kobayashi-Eisenman volume elements, have received increasing interest as biholomorphic invariants in recent years (see [2], [12], [14], [15] and the references therein). We particularly consider both the squeezing function and the Fridman invariant associated to a certain class of pseudoconvex domains in \mathbb{C}^n in this paper.

Let Ω be a domain in \mathbb{C}^n and $p \in \Omega$. For a holomorphic embedding $f: \Omega \to B^n$ with $f(p) = 0$, let us define

$$s_{\Omega,f}(p) := \sup \{r > 0: B(0; r) \subset f(\Omega)\},$$

where $B(z_0; r) \subset \mathbb{C}^n$ denotes the complex ball of radius r with center at z_0 and B^n denotes the complex unit ball $B(0; 1)$. Then the squeezing function $s_{\Omega}: \Omega \to \mathbb{R}$ is defined in [4] as

$$s_{\Omega}(p) := \sup_{f} \{s_{\Omega,f}(p)\}.$$

Note that $0 < s_{\Omega}(z) \leq 1$ for any point $z \in \Omega$.

Received October 14, 2019; Accepted May 14, 2020.

2010 Mathematics Subject Classification. Primary 32H02; Secondary 32M05, 32T25.

Key words and phrases. Finite type domains, Fridman invariant, holomorphic mappings, squeezing function.
Next, let us recall the Fridman invariant. Let Ω be a bounded domain in \mathbb{C}^n and let $B_\Omega(p, r)$ be the Kobayashi ball around p of radius $r > 0$. Let \mathcal{R} be the set of all $r > 0$ such that there is a holomorphic embedding $f : \mathbb{B}^n \to \Omega$ with $B_\Omega(p, r) \subset f(\mathbb{B}^n)$. Note that \mathcal{R} is non-empty (cf. [12]). Then the Fridman invariant is defined by

$$h_\Omega(p) = \inf_{r \in \mathcal{R}} \frac{1}{r}.$$

Let Ω be a bounded domain in \mathbb{C}^n with smooth boundary $\partial \Omega$ and $\xi_0 \in \partial \Omega$. Suppose that $\partial \Omega$ is pseudoconvex of D’Angelo finite type near ξ_0. Then it is proved in [5], [6] and [10] that ξ_0 is strongly pseudoconvex if $\lim_{\Omega \ni z_\Omega \to \xi_0} s_\Omega(z) = 1$.

Now we consider a sequence $\{\eta_j\} \subset \Omega$ converging to ξ_0. Suppose that $\partial \Omega$ is pseudoconvex of D’Angelo finite type near ξ_0 and $\lim_{j \to \infty} s_\Omega(\eta_j) = 1$ or $\lim_{j \to \infty} h_\Omega(\eta_j) = 0$. In [9] and [12], they proved that if the sequence $\{\eta_j\} \subset \Omega$ converges to ξ_0 along the inner normal line to $\partial \Omega$ at ξ_0, then ξ_0 must be strongly pseudoconvex (for details, see [9] for $n = 2$ and [12] for general case). Moreover, this result was obtained in [13] for the case that $\{\eta_j\} \subset \Omega$ converges nontangentially to ξ_0 and in [15] for the case that $\{\eta_j\} \subset \Omega$ converges $(\frac{1}{m_1}, \ldots, \frac{1}{m_{n-1}})$-nontangentially to an h-extendible boundary point ξ_0 (for definition, see [15]). Here $(1, m_1, \ldots, m_{n-1})$ is the multitype of $\partial \Omega$ at ξ_0 and the h-extendibility at ξ_0 means that the Catlin multitype and D’Angelo multitype of $\partial \Omega$ at ξ_0 coincide (see [16]).

Throughout this paper, we consider a smooth bounded domain Ω in \mathbb{C}^n and a point $\xi_0 \in \partial \Omega$ such that $\partial \Omega$ is pseudoconvex of D’Angelo finite type near ξ_0 and the Levi form has corank at most 1 at ξ_0. In this paper, we prove the following theorem.

Theorem 1.1. Let Ω be a bounded domain in \mathbb{C}^n with smooth pseudoconvex boundary. If ξ_0 is a boundary point of Ω of D’Angelo finite type such that the Levi form has corank at most 1 at ξ_0 and if there exists a sequence $\{\eta_j\} \subset \Omega$ such that $\lim_{j \to \infty} \eta_j = \xi_0$ and $\lim_{j \to \infty} s_\Omega(\eta_j) = 1$ or $\lim_{j \to \infty} h_\Omega(\eta_j) = 0$, then $\partial \Omega$ is strongly pseudoconvex at ξ_0.

As a consequence, we obtain the following well-known result (see [2, 9, 12]).

Corollary 1.2. Let Ω be a bounded domain in \mathbb{C}^n with smooth pseudoconvex boundary. If ξ_0 is a boundary point of Ω of D’Angelo finite type such that the Levi form has corank at most 1 at ξ_0 and if $\lim_{\Omega \ni z \to \xi_0} s_\Omega(z) = 1$ or $\lim_{\Omega \ni z \to \xi_0} h_\Omega(z) = 0$, then $\partial \Omega$ is strongly pseudoconvex at ξ_0.

Remark 1.3. It is known that the boundary point ξ_0 in our situation is h-extendible. Therefore, if $\{\eta_j\}$ converges $(\frac{1}{m_1}, \ldots, \frac{1}{m_{n-1}})$-nontangentially to ξ_0, then ξ_0 is strongly pseudoconvex as mentioned above. However, we emphasize here that $\{\eta_j\} \subset \Omega$ is an arbitrary sequence converging to ξ_0. For the proof of Theorem 1.1, as in [9] we also utilize the scaling method by Pinchuk to show...
that the complex unit ball B^n is biholomorphically equivalent to a model

$$MP = \left\{ (z_1, \ldots, z_n) \in \mathbb{C}^n : \text{Re}(z_n) + P(z_1, \bar{z}_1) + \sum_{\alpha=2}^{n-1} |z_\alpha|^2 < 0 \right\},$$

where P is a non-zero real-valued subharmonic polynomial of degree $2m$, where $2m$ is the D'Angelo type of $\partial \Omega$ at ξ_0. Then, this yields $2m = 2$ and hence our theorem follows.

The organization of the paper is described as follows: For the convenience of the reader, we exploit a constructive procedure of the scaling sequence in higher dimension in Section 2, based on the results in [3] and [7]. Then we investigate the normality of our scaling sequence which is crucial in determining the fact that B^n and MP are biholomorphically equivalent. We finalize the proof of Theorem 1.1 in Section 3, after applying a technical lemma [1, Lemma 3.2] related to the biholomorphic equivalence among models.

2. The scaling sequence in higher dimension

This section is devoted to a proof of the normality of our scaling sequence. Then, by using this normality result the biholomorphic equivalence between MP and the complex unit ball B^n will be shown.

First of all, we recall the following definition which will be used for the proof in this section (see [7] or [8]).

Definition. Let $\{\Omega_j\}_{j=1}^{\infty}$ be a sequence of open sets in \mathbb{C}^n and Ω_0 be an open set of \mathbb{C}^n. The sequence $\{\Omega_j\}_{j=1}^{\infty}$ is said to converge to Ω_0 (written $\lim_{j \to \infty} \Omega_j = \Omega_0$) if and only if

(i) For any compact set $K \subset \Omega_0$, there is a $j_0 = j_0(K)$ such that $j \geq j_0$ implies that $K \subset \Omega_j$, and

(ii) If K is a compact set which is contained in Ω_j for all sufficiently large j, then $K \subset \Omega_0$.

Throughout this section, the domain Ω and the boundary point $\xi_0 \in \partial \Omega$ are assumed to satisfy the hypothesis of Theorem 1.1. Let $2m$ be the D’Angelo type of $\partial \Omega$ at ξ_0. Without loss of generality, we may assume that $\xi_0 = 0 \in \mathbb{C}^n$ and the rank of Levi form at ξ_0 is exactly $n - 2$. Let ρ be a smooth defining function for Ω. After a linear change of coordinates, we can find the coordinate functions z_1, \ldots, z_n defined on a neighborhood U_0 of ξ_0 such that

$$\rho(z) = \text{Re}(z_n) + \sum_{j+k \leq 2m, j,k>0} a_{j,k} z_1^j z_1^k + \sum_{\alpha=2}^{n-1} |z_\alpha|^2 + \sum_{j+k \leq 2m, j,k>0} \text{Re}((b_{j,k}^n z_1^j z_1^k) z_\alpha) + O(|z_n|z + |z|^2|z| + |z|^2|z_1|^{m+1} + |z_1|^{2m+1}),$$

where P is a non-zero real-valued subharmonic polynomial of degree $2m$. Then, this yields $2m = 2$ and hence our theorem follows.
where \(z = (z_1, \ldots, z_n) \), \(z^* = (0, z_2, \ldots, z_{n-1}, 0) \), and \(a_{j,k}, b_{j,k}^{\alpha} \) (\(2 \leq \alpha \leq n-1 \)) are \(C^\infty \)-smooth functions in a small neighborhood of the origin in \(\mathbb{C}^n \).

By [3, Proposition 2.2] (see also [7, Proposition 3.1]), for each point \(\eta \) in a small neighborhood of the origin, there exists a unique biholomorphism \(\Phi_\eta \) of \(\mathbb{C}^n \), \(z = \Phi_\eta^{-1}(w) \), such that

\[
\rho(\Phi_\eta^{-1}(w)) - \rho(\eta) = \text{Re}(w_n) + \sum_{j+k \leq 2m} a_{j,k}(\eta) w_1^j \bar{w}_1^k
\]

\[
+ \sum_{\alpha=2}^{n-1} \sum_{j+k \leq 2m} \sum_{j,k>0} \text{Re}[b_{j,k}^{\alpha}(\eta) w_1^j \bar{w}_1^k] w_\alpha
\]

\[
+ O(|w_n||w| + |w^*|^2|w| + |w^*|^2|w|^{m+1} + |w|^{2m+1}),
\]

where \(w^* = (0, w_2, \ldots, w_{n-1}, 0) \).

Now let us denote by

\[
A_l(\eta) = \max\{|a_{j,k}(\eta)| : j + k = l\} \quad (2 \leq l \leq 2m),
\]

\[
B_{l'}(\eta) = \max\{|b_{j,k}^{\alpha}(\eta)| : j + k = l', 2 \leq \alpha \leq n-1\} \quad (2 \leq l' \leq m).
\]

For each \(\delta > 0 \), we define \(\tau(\eta, \delta) \) as follows.

\[
\tau(\eta, \delta) = \min \left\{ \left(\delta/A_l(\eta) \right)^{1/l}, \left(\delta^2/B_{l'}(\eta) \right)^{1/l'} : 2 \leq l \leq 2m, 2 \leq l' \leq m \right\}.
\]

We note that the D’Angelo type of \(\partial\Omega \) at \(\xi_0 \) equals \(2m \) and the Levi form has rank at least \(n-2 \) at \(\xi_0 \). Therefore, \(A_{2m}(\xi_0) \neq 0 \) and hence there exists a sufficiently small neighborhood \(U \) of \(\xi_0 \) such that \(|A_{2m}(\eta)| \geq c > 0 \) for all \(\eta \in U \). This yields the relation

\[
\delta^{1/2} \leq \tau(\eta, \delta) \leq \delta^{1/(2m)} \quad (\eta \in U).
\]

Let us define an anisotropic dilation \(\Delta^\epsilon_\eta \) by

\[
\Delta^\epsilon_\eta(w_1, \ldots, w_n) = \left(\frac{w_1}{\tau_1(\eta, \epsilon)}, \ldots, \frac{w_n}{\tau_n(\eta, \epsilon)} \right),
\]

where \(\tau_1(\eta, \epsilon) = \tau(\eta, \epsilon) \), \(\tau_k(\eta, \epsilon) = \epsilon \sqrt{\tau} \) \((2 \leq k \leq n-1) \), \(\tau_n(\eta, \epsilon) = \epsilon \). For each \(\eta \in \mathbb{C}^n \), if we set \(\rho^\epsilon_\eta(w) = \epsilon^{-1} \rho \circ \Phi_\eta^{-1} \circ (\Delta^\epsilon_\eta)^{-1}(w) \), then (2.1) and (2.3) imply that

\[
\rho^\epsilon_\eta(w) = \text{Re}(w_n) + \sum_{j+k \leq 2m} a_{j,k}(\eta) \epsilon^{-1} \tau(\eta, \epsilon)^{-1} \tau(\eta, \epsilon) j + k w_1^j \bar{w}_1^k + \sum_{\alpha=2}^{n-1} |w_\alpha|^2
\]

\[
+ \sum_{\alpha=2}^{n-1} \sum_{j+k \leq m} \sum_{j,k>0} \text{Re}[b_{j,k}^{\alpha}(\eta) \epsilon^{-1} \tau(\eta, \epsilon) j + k w_1^j \bar{w}_1^k w_\alpha] + O(\tau(\eta, \epsilon)).
\]
\(\eta_j \in U_0^- := U_0 \cap \{ \rho < 0 \} \) for all \(j \). For this sequence \(\{ \eta_j \} \), one associates with a sequence of points \(\eta'_j = (\eta_{j,1}, \ldots, \eta_{j(n-1)}, \eta_{j,n} + \epsilon_j) \), \(\epsilon_j > 0 \), \(\eta'_j \) in the hypersurface \(\{ \rho = 0 \} \). Let us consider the sequence of dilations \(\Delta^\epsilon_{\eta'_j} \). Then \(\Delta^\epsilon_{\eta'_j} \circ \Phi_{\eta'_j}(\eta_j) = (0, \ldots, 0, -1) \) and moreover it follows from (2.4) that \(\Delta^\epsilon_{\eta'_j} \circ \Phi_{\eta'_j}(\{ \rho = 0 \}) \) is defined by

\[
\text{Re}(w_n) + P_{\eta'_j}(w_1, \bar{w}_1) + \sum_{\alpha=2}^{n-1} |w_\alpha|^2 + \sum_{\alpha=2}^{n-1} \text{Re}(Q^\alpha_{\eta'_j}(w_1, \bar{w}_1))w_\alpha + O(\tau(\eta'_j, \epsilon_j)) = 0,
\]

where

\[
P_{\eta'_j}(w_1, \bar{w}_1) := \sum_{j+k \leq 2m, j,k>0} a_{j,k}(\eta'_j)\epsilon_j^{-1} \tau(\eta'_j, \epsilon_j)^{j+k}w_1^j \bar{w}_1^k,
\]

\[
Q^\alpha_{\eta'_j}(w_1, \bar{w}_1) := \sum_{j+k \leq m, j,k>0} b_{j,k}(\eta'_j)\epsilon_j^{-1/2} \tau(\eta'_j, \epsilon_j)^{j+k}w_1^j \bar{w}_1^k.
\]

Then one can deduce from (2.2) that the coefficients of \(P_{\eta'_j} \) and \(Q^\alpha_{\eta'_j} \) are bounded by one. Therefore, after taking a subsequence, we may assume that \(\{ P_{\eta'_j} \} \) converges uniformly on every compact subset of \(\mathbb{C} \) to a polynomial \(P(z_1, \bar{z}_1) \). Moreover, \(\{ Q^\alpha_{\eta'_j} \} \) \((2 \leq \alpha \leq n-1) \) converge uniformly on every compact subset of \(\mathbb{C} \) to 0 by the following lemma.

Lemma 2.1 (see Lemma 2.4 in [3]). \(|Q^\alpha_{\eta'_j}(w_1, \bar{w}_1)| \leq \tau(\eta'_j, \epsilon_j)^{\frac{1}{2}} \) for all \(\alpha = 2, \ldots, n-1 \) and \(|w_1| \leq 1 \), provided that \(\tau \) is sufficiently small.

Then, by Lemma 2.1, after taking a subsequence, one can deduce that \(\Delta^\epsilon_{\eta'_j} \circ \Phi_{\eta'_j}(U_0^-) \) converges to the following model

\[
(2.5) \quad M_P := \left\{ \hat{\rho} := \text{Re}(w_n) + P(w_1, \bar{w}_1) + \sum_{\alpha=2}^{n-1} |w_\alpha|^2 < 0 \right\},
\]

where \(P(w_1, \bar{w}_1) \) is a polynomial of degree \(\leq 2m \) without harmonic terms (cf. [7, p. 153]).

Remark 2.2. It is well-known that \(M_P \) is a smooth limit of the pseudoconvex domains \(\Delta^\epsilon_{\eta'_j} \circ \Phi_{\eta'_j}(U_0^-) \). Then, \(M_P \) becomes to be a pseudoconvex domain. Therefore, the function \(\hat{\rho} \) in (2.5) is plurisubharmonic, and thus \(P \) is a subharmonic polynomial whose Laplacian does not vanish identically.

Now let us recall the following theorem, which ensures the normality of the scaling sequence that will be given in the proof of Proposition 2.4.

Proposition 2.3 (see Theorem 3.11 in [7]). Let \(\Omega \) be a domain in \(\mathbb{C}^n \). Suppose that \(\partial \Omega \) is pseudoconvex, of D’Angelo finite type and is \(C^\infty \)-smooth near a boundary point \((0, \ldots, 0) \in \partial \Omega \). Suppose that the Levi form has corank at most
Let D be a domain in \mathbb{C}^k and $\varphi_j : D \to \Omega$ be a sequence of holomorphic mappings such that $\eta_j := \varphi_j(a)$ converges to $0, \ldots, 0$ for some point $a \in D$. Let $\{T_j\}$ be a sequence of automorphisms of \mathbb{C}^n which associates with the sequence $\{\eta_j\}$ by the method of the dilation of coordinates (i.e., $T_j = \Delta^{\delta_j} \circ \Phi_{\eta_j}$). Then $\{T_j \circ \varphi_j\}$ is normal and its limits are holomorphic mappings from D to the domain of the form

$$M_P = \left\{(w_1, \ldots, w_n) \in \mathbb{C}^n : \Re(w_1) + P(w_1, \bar{w}_1) + \sum_{n=2}^{n-1} |w_n|^2 < 0\right\},$$

where $P \in \mathcal{P}_{2m}$. Here \mathcal{P}_{2m} denotes the space of real-valued polynomials on \mathbb{C} of degree $\leq 2m$ without harmonic terms.

Proposition 2.4. M_P is biholomorphically equivalent to the complex unit ball \mathbb{B}^n.

Proof. Let $\{\eta_j\} \subset \Omega$ be a sequence as in Theorem 1.1, that is, $\eta_j \to \xi_0 = 0$ as $j \to \infty$. We now split the proof into two following cases:

Case 1: $\lim_{j \to \infty} s_\Omega(\eta_j) = 1$. Let us set $\delta_j = 2(1-s_\Omega(\eta_j))$ for all j. Then by our assumption, for each j, there exists an injective holomorphic map $f_j : \Omega \to \mathbb{B}^n$ such that $f_j(\eta_j) = (0', 0)$ and $\mathbb{B}(0; 1 - \delta_j) \subset f_j(\Omega)$. Then by [7, Proposition 2.2] and the hypothesis of Theorem 1.1, after choosing a suitable sequence of injective holomorphic mappings $f_j : \Omega \to \mathbb{B}^n$ whose existence is assured by the assumption on the squeezing function s_Ω, for each compact subset $K \subset \mathbb{B}^n$ and each neighborhood U_0 of ξ_0, there exists an integer j_0 such that $f_j^{-1}(K) \subset \Omega \cap U_0$ for all $j \geq j_0$, i.e., $f_j(\Omega \cap U_0)$ converges to \mathbb{B}^n. Then it follows from Proposition 2.3 that the sequence $T_j \circ f_j^{-1} : f_j(\Omega \cap U_0) \to T_j(\Omega \cap U_0)$ is normal and its limits are holomorphic mappings from \mathbb{B}^n to M_P. Moreover, by Montel’s theorem the sequence $f_j \circ T_j^{-1} : T_j(\Omega \cap U_0) \to f_j(\Omega \cap U_0) \subset \mathbb{B}^n$ is also normal. We further note that the sequence $T_j \circ f_j^{-1}$ is not compactly divergent since $T_j \circ f_j^{-1}(0', 0) = (0', -1)$. Then by [7, Proposition 2.1], after taking some subsequence of $\{T_j \circ f_j^{-1}\}$, we may assume that such a subsequence converges uniformly on every compact subset of \mathbb{B}^n to a holomorphic mapping F from \mathbb{B}^n onto M_P, as desired.

Case 2: $\lim_{j \to \infty} h_\Omega(\eta_j) = 0$.

Since the point ξ_0 is a local peak point (cf. [16]), by [11, Proposition 3.4], one has $\lim_{j \to \infty} H_{U_0 \cap \Omega}(\eta_j) = 0$. Moreover, by our assumption, there exist a sequence of positive real numbers $R_j \to +\infty$ and a sequence of biholomorphic embeddings $g_j : \mathbb{B}^n \to U_0 \cap \Omega$ such that $g_j(0) = \eta_j$ and $B_{U_0 \cap \Omega}(\eta_j, R_j) \subset g_j(\mathbb{B}^n)$. Then it follows from Proposition 2.3 that the sequence $T_j \circ g_j : \mathbb{B}^n \to T_j(\Omega \cap U_0)$ is normal and its limits are holomorphic mappings from \mathbb{B}^n to M_P. Moreover, by Montel’s theorem the sequence $g_j^{-1} \circ T_j^{-1} : T_j(\Omega \cap U_0) \to g_j^{-1}(\Omega \cap U_0) \subset \mathbb{B}^n$ is also normal. We also note that the sequence $T_j \circ g_j$ is not compactly divergent since $T_j \circ g_j(0', 0) = (0', -1)$. Then by [7, Proposition 2.1], after taking some
subsequence of \(\{T_j \circ g_j\} \), we may assume that such a subsequence converges uniformly on every compact subset of \(\mathbb{B}^n \) to a biholomorphism \(G \) from \(\mathbb{B}^n \) onto \(M_P \), as desired.

Altogether, the proof is now complete. \(\Box \)

Remark 2.5. As in [9], the sequence \(\{\eta_j\} \) can be chosen so that \(\eta_j \) converges to \(\xi_0 \) along the direction normal to the boundary. Therefore, \(P(z_1, \bar{z}_1) \) must be homogeneous subharmonic polynomial of degree 2\(m \). However, by using the argument as in [1, Sections 3 and 4] (see also [7, Section 4]), in our situation, \(P \) is also a homogeneous subharmonic polynomial of degree 2\(m \) without harmonic terms. Moreover, one sees from Remark 2.2 in particular that \(\Delta P \not\equiv 0 \).

3. Proof of the main theorem

We shall complete the proof of Theorem 1.1 as our main result in this section. Recall from Remark 2.5 that

\[
M_P = \{(z_1, \ldots, z_n) \in \mathbb{C}^n: \text{Re}(z_n) + P(z_1, \bar{z}_1) + |z_2|^2 + \cdots + |z_{n-1}|^2 < 0\},
\]

where \(P \) is a non-zero real-valued subharmonic polynomial of degree 2\(m \). We define a space \(\mathcal{H}_{2m} \) by setting

\[
\mathcal{H}_{2m} := \{H \in \mathcal{P}_{2m}: \text{deg} H = 2m, \text{H is homogeneous and subharmonic}\},
\]

where the space \(\mathcal{P}_{2m} \) is given as in Proposition 2.3.

With these notations, we prepare one more lemma in order to prove Theorem 1.1.

Lemma 3.1 (see Lemma 3.2 in [1]). Let \(Q \in \mathcal{P}_{2m} \) and \(H \in \mathcal{H}_{2m} \). If \(M_Q \) and \(M_H \) are biholomorphically equivalent, then the homogeneous part of higher degree in \(Q \) is equal to \(\lambda H(e^{i\nu}z) \) for some \(\lambda > 0 \) and \(\nu \in [0, 2\pi] \).

We note first that the complex unit ball \(\mathbb{B}^n \) is biholomorphic to the Siegel half-space \(\{(z_1, \ldots, z_n) \in \mathbb{C}^n: \text{Re}(z_n) + |z_1|^2 + |z_2|^2 + \cdots + |z_{n-1}|^2 < 0\} \). In addition, Proposition 2.4 and Lemma 3.1 imply that \(P(z_1, \bar{z}_1) = c|z_1|^2 \) for some \(c > 0 \), that is, \(m = 1 \). Combining these two facts, we conclude that \(\partial \Omega \) is strongly pseudoconvex at \(\xi_0 \) (\(\xi_0 \) is of the D’Angelo type 2), which ends the proof of Theorem 1.1.

Acknowledgement. Part of this work was done while the authors were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM). They would like to thank the VIASM for financial support and hospitality. This research was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2017.311 and the National Research Foundation of the Republic of Korea under grant number NRF-2018R1D1A1B07044363.
References

Hyeseon Kim
Research Institute of Mathematics
Seoul National University
Seoul 08826, Korea
Email address: hop222@snu.ac.kr, hop222@gmail.com
Anh Duc Mai
Faculty of Mathematics Physics and Informatics
Tay Bac University
Quyet Tam, Son La City, Son La, Vietnam
Email address: ducphuongma@gmail.com, maianhduc@utb.edu.vn

Thi Lan Huong Nguyen
Department of Mathematics
Hanoi University of Mining and Geology
18 Pho Vien, Bac Tu Liem, Hanoi, Vietnam
Email address: nguyenlanhuong@humg.edu.vn

Van Thu Ninh
Department of Mathematics
Vietnam National University at Hanoi
334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
and
Thang Long Institute of Mathematics and Applied Sciences
Nghiem Xuan Yem, Hoang Mai, HaNoi, Vietnam
Email address: thunv@vnu.edu.vn