DOI QR코드

DOI QR Code

Nutritional composition and antioxidant activity of pink oyster mushrooms (Pleurotus djamor var. roseus) grown on a paddy straw substrate

  • Raman, Jegadeesh (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lakshmanan, Hariprasath (Department of Biochemistry, Karpagam Academy of Higher Education) ;
  • Jang, Kab-Yeul (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Oh, Minji (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Oh, Youn-Lee (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Im, Ji-Hoon (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • Received : 2020.07.20
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

Pleurotus djamor var. roseus is an edible mushroom isolated from the wild and cultivated on paddy straw substrates. The present study was carried out to compare the nutritional composition and antioxidant properties of P. djamor var. roseus at different growth stages (primordia, basidiomata, and mycelia). The protein content was is in the range of 31.48 to 35.50 g/100g dw. The crude fiber content ranged from 8.0 to 14.60 g, and that of total carbohydrates ranged from 44.75 to 48.90 g. Sodium, magnesium, and calcium reached the maximum levels in basidiomata, and selenium was detected in basidiomata and mycelia (0.47 - 0.22 mg/Kg). The amino acid profile showed that all essential and nonessential amino acids and glycine showed maximum levels in basidiomata and 15.98 ± 0.01 g/100g. The fatty acid profile showed the presence of saturated and unsaturated fatty acids; the unsaturated fatty acid content was maximum in all of the samples, ranging from 76 - 40.41%. The total phenol and flavonoid contents as well as the scavenging (DPPH), ferric thiocyanate (FTC), and thiobarbituric acid (TBA) activities in the context of methanol and water extracts from primordia, basidiomata, and mycelium were determined. Among them, basidiomata and mycelial methanol extracts exhibited significant antioxidant activity. Overall, these findings show that P. djamor var. roseus can be used as a functional food for daily consumption.

Keywords

References

  1. Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N. 2007. SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14: 827-845. https://doi.org/10.2174/092986707780090954
  2. AOAC. 2003. Official methods of analysis of AOAC International. Association of Official Analytical Chemists, Rockville, Maryland, USA. 17th edition. 2nd revision.
  3. Arbaayah HH, Umi KY. 2013. Antioxidant Properties in the Oyster Mushrooms (Pleurotus spp.) and Split Gill Mushroom (Schizophyllum commune) Ethanolic Extracts. Mycosphere 4: 661-673. https://doi.org/10.5943/mycosphere/4/4/2
  4. Arvay JT, Tomas J, Hauptvogl M, Kopernicka M, Kovacik A, Bajcan D, Massanyi P. 2014. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J Environ Sci Health B 49: 815-827. https://doi.org/10.1080/03601234.2014.938550
  5. Atri NS, Sharma SK, Joshi R, Gulati A, Gulati A. 2012. Amino Acid Composition of Five Wild Pleurotus Species Chosen from North West India. Eur J Biol Sci 4: 31-34.
  6. Bamidele OP, Fasogbon BM. 2020. Nutritional and functional properties of maize-oyster mushroom (Zea mays - Pleurotus ostreatus) based composite flour and its storage stability. Open Agric 5: 40-49. https://doi.org/10.1515/opag-2020-0007
  7. Bach F, Helm CV, Bellettini MB, Maciel GM, Haminiuk CWI. 2017. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. Int J Food Sci Technol 52: 2382-2392. https://doi.org/10.1111/ijfs.13522
  8. Bhatia P, Aureli F, D'Amato M, Prakash R, Cameotra SS, Nagaraja TP, Cubadda F. 2013. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem 140: 225-230. https://doi.org/10.1016/j.foodchem.2013.02.054
  9. Boonsong S, Klaypradit W, Wilaipun P. 2016. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric Nat Resour 50 :89-97. https://doi.org/10.1016/j.anres.2015.07.002
  10. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  11. Brand-Williams W, Cuvelier ME, Berset CLWT. 1995. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  12. Brzezicha-Cirocka J, Grembecka M, Grochowska I, Falandysz, J, Szefer P. 2019. Elemental composition of selected species of mushrooms based on a chemometric evaluation. Ecotoxicol Environ Saf 173: 353-365. https://doi.org/10.1016/j.ecoenv.2019.02.036
  13. Butkhup L, Samappito W, Jorjong S. 2018. Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Sci Biotechnol 27: 193-202. https://doi.org/10.1007/s10068-017-0237-5
  14. Cai C, Ma J, Han C. Ji Y, Zhao G, He X. 2019. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang. Sci Rep 9: 7418. https://doi.org/10.1038/s41598-019-43886-0
  15. Cardwell G, Bornman JF, James AP, Black LJ. 2018. A review of mushrooms as a potential source of dietary vitamin D. Nutrients 10: 1498. https://doi.org/10.3390/nu10101498
  16. Carlotti ME, Gallarate M, Gasco MR, Morel S, Serafino A, Ugazio E. 1997. Synergistic action of vitamin C and amino acids on vitamin E in inhibition of the lipoperoxidation of linoleic acid in disperse systems. Int J Pharm 155: 251-261. https://doi.org/10.1016/S0378-5173(97)00168-3
  17. Chang ST, Buswell JA. 1996. Mushroom nutriceuticals. World J Microbiol Biotechnol 12: 473-476. https://doi.org/10.1007/BF00419460
  18. Chang ST, Wasser SP. 2017. The cultivation and Environmental impact of mushrooms. Oxford Research Encyclopaedia, Environmental Science (c), Oxford University Press, USA. 43.
  19. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  20. da Silva MCS, Naozuka J, Oliveira PV, Vanetti MCD, Bazzolli DMS, Costa NMB, Kasuya MCM. 2010. In vivo bioavailability of selenium in enriched Pleurotus ostreatus mushrooms. Metallomics 2: 162-166. https://doi.org/10.1039/b915780h
  21. Demirci M. 2006. Gida Kimyasi. Kelebek Matbaacilik, San. Tic. Ltd., Topkapi-Istanbul. 233-241.
  22. Dundar A, Acay H, Yildiz A. 2008. Yield performances and nutritional contents of three oyster mushroom species cultivated on wheat stalk. Afr J Biotechnol 7: 3497-3501.
  23. FAO. 2006. Global Forest Resources Assessment 2005: Progress towards sustainable forest management. FOA Forestry Paper 147. Available from: http://www.fao.org (accessed October 2007). United Nations Food and Agriculture Organization (FAO), Rome.
  24. Feng T, Bing F, Yang Y, Zhuang H, Ye R, Li X, Xu Z, Wang K. 2016. Discrimination of edible fungi varieties and evaluation of their umami intensities by using an electronic tongue method. Int J Food Sci Technol 51: 1393-1400. https://doi.org/10.1111/ijfs.13096
  25. Folch J, Lees GH, Stanley GHS. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226: 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  26. Ganesan K, Xu B. 2018. Anti-Obesity Effects of Medicinal and Edible Mushrooms. Molecules 23: 2880. https://doi.org/10.3390/molecules23112880
  27. Gąsecka M, Mleczek M, Siwulski M, Niedzielski P. 2016. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur Food Res Technol 242: 723-732. https://doi.org/10.1007/s00217-015-2580-1
  28. Gebrelibanos M, Megersa N, Taddesse AM. 2016. Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. Int J Food Contam 3: 2. https://doi.org/10.1186/s40550-016-0025-7
  29. Guillamon E, Garcia-Lafuente A, Lozano M, D'Arrigo M, Rostagno MA, Villares A, Martinez JA. 2010. Edible Mushrooms: Role in the Prevention of Cardiovascular Diseases. Fitoterapia 81: 715-723. https://doi.org/10.1016/j.fitote.2010.06.005
  30. Gupta A, Sharma S, Saha S, Walia S. 2013. Yield and nutritional content of Pleurotus sajor caju on wheat straw supplemented with raw and detoxified mahua cake, Food Chem 141: 4231-4239. https://doi.org/10.1016/j.foodchem.2013.06.126
  31. Hoseinifar SH, Zou HK, Paknejad H, Hajimoradloo A, Doan HV. 2019. Effects of dietary white-button mushroom powder on mucosal immunity, antioxidant defense, and growth of common carp (Cyprinus carpio). Aquaculture 501: 448-454. https://doi.org/10.1016/j.aquaculture.2018.12.007
  32. Indian Pharmacopoeia. 1996. Government of India, Ministry of Health and Family Welfare. Controller of Publications, Delhi, India. 2: 448.
  33. Jegadeesh R, Lakshmanan H, Kab-yeul J, Sabaratnam V, Raaman N. 2018. Cultivation of Pink Oyster mushroom Pleurotus djamor var. roseus on various agro-residues by low cost technique. J Mycopathol Res 56: 213-220.
  34. Keen CL, Uriu-Adams JY, Ensunsa JL, Gershwin ME. 2004. Trace Elements/Minerals and Immunity. In M.E. Gershwin, P. Nestel & C.L. Keen (ed.), Handbook of Nutrition and Immunity, Humana Press. USA.
  35. Khatua S, Paul S, Acharya K. 2013. Mushroom as the potential source of new generation of antioxidant: A review. Res J Pharm Technol 6: 496-505.
  36. Kikuzaki H, Nakatani N. 1993. Antioxidant Effects of Some Ginger Constituents. J Food Sci 58: 1407-1410. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x
  37. Kikuzaki H, Usuguchi J, Nakatani N. 1991. Constituents of Zingiberaceae. I. Diarylheptanoids from the Rhizomes of Ginger (Zingiber officinale Roscoe) Chem Pharm Bull 39: 120-122. https://doi.org/10.1248/cpb.39.120
  38. Kozarski MS, Klaus AS, Niksic MP, van Griensven LJLD, Vrvic MM, Jakovljevic DM. 2014. Polysaccharides of higher fungi: Biological role, structure, and antioxidative activity. Hemijska Industrija 68: 305-320. https://doi.org/10.2298/HEMIND121114056K
  39. Kumari D, Reddy MS, Upadhyay RC. 2011. Antioxidant activity of three species of wild mushroom genus Cantharellus collected from North Western Himalaya, India. Int J Agric Biol 13: 415-418.
  40. Lavelli V, Proserpio C, Gallotti F, Laureati M, Pagliarini E. 2018. Circular reuse of bio-resources: the role of Pleurotus spp. in the development of functional foods. Food Funct 9: 1353-1372. https://doi.org/10.1039/C7FO01747B
  41. Li H, Stampfer MJ, Giovannucci EL, Morris JS, Willett WC, Gaziano JM, Ma J. 2004. A prospective study of plasma selenium levels and prostate cancer risk. J Natl Cancer Inst 96: 696-703. https://doi.org/10.1093/jnci/djh125
  42. Lin JY, Tang CY. 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 101: 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
  43. Lin SD, Wu YT, Lo YC, Mau JL. 2017. Quality characteristics of centrifuged broth from blanched Pleurotus eryngii and its application as instant drink. J Food Process Preserv 42: 1-8.
  44. Lo SH. 2005. Quality evaluation of Agaricus bisporus, Pleurotus eryngii, Pleurotus ferulae and Pleurotus ostreatus and their antioxidant properties during postharvest storage. Masters Thesis, National Chung-Hsing University, Taichung, Taiwan.
  45. Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4: 118-126. https://doi.org/10.4103/0973-7847.70902
  46. Mallavadhani UV, Sudhakar AVS, Satyanarayana KVS, Mahapatra A, Li W, VanBreeman RB. 2006. Chemical and analytical screening of some edible mushrooms. Food Chem 95: 58-64. https://doi.org/10.1016/j.foodchem.2004.12.018
  47. Mallikarjuna SE, Ranjini A, Haware DJ, Vijayalakshmi MR, Shashirekha MN, Rajarathnam S. 2013. Mineral composition of four edible mushrooms. J Chem 2013: 1-5.
  48. Manzi P, Grambelli L, Marconi S, Vivanti V, Pizzoferrato L. 1999. Nutrients in edible mushrooms: an inter-species comparative study. Food Chem 65: 477-482. https://doi.org/10.1016/S0308-8146(98)00212-X
  49. Mattila P, Könkö K, Eurola M, Pihlava JM, Astola J, Vahteristo L, Hietaniemi V, Kumpulainen J, Valtonen M, Piironen V. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 49: 2343-2348. https://doi.org/10.1021/jf001525d
  50. Maynard AJ. 1970. Extraction methods and separation processes. In A.M. Joslyn (ed.), Methods of Food Analysis. (2nd edition), Academic Press, New York, USA. 115-156.
  51. Menaga D, Mahalingam PU, Rajakumar S, Ayyasamy PM. 2012. Evaluation of phytochemical characteristics and antimicrobial activity of Pleurotus florida mushroom. Asian J Pharm Clin Res 5: 102-106.
  52. Mironczuk-Chodakowska I, Socha K, Zujko ME, Terlikowska KM, Borawska MH, Witkowska AM. 2019. Copper, Manganese, Selenium and Zinc in Wild-Growing Edible Mushrooms from the Eastern Territory of "Green Lungs of Poland": Nutritional and Toxicological Implications. Int J Environ Res Public Health 16: 3614. https://doi.org/10.3390/ijerph16193614
  53. Mleczek M, Magdziak Z, Gasecka M, Niedzielski P, Kalac P, Siwulski M, Rzymski P, Zalicka S, Sobieralski K. 2016. Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr.) Fr. from unpolluted and polluted areas. Environ Sci Pollut Res 23: 20609-20618. https://doi.org/10.1007/s11356-016-7222-z
  54. Mukhopadhyay R, Guha AK. 2015. A comprehensive anlysis of the nutritional quality of edible mushroom Pleurotus sajor-caju grown in deproteinized whey medium. LWT Food Sci Technol 61: 339-345. https://doi.org/10.1016/j.lwt.2014.12.055
  55. Newell AM, Yousef GG, Lila MA, Ramírez-Mares MV, de Mejia EG. 2010. Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J Ethnopharmacol 130: 536-544. https://doi.org/10.1016/j.jep.2010.05.051
  56. Odoh R, Ugwuja DI, Udegbunam IS. 2017. Proximate composition and mineral profiles of selected edible mushroom consumed in northern part of Nigeria. Acad J Sci Res 5: 349-364.
  57. Palacios I, Lozano M, Moro C, D'Arrigo M, Rostagno MA, Martinez JA, Garcia-Lafuente A, Guillamon E, Villares A. 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem 128: 674-678. https://doi.org/10.1016/j.foodchem.2011.03.085
  58. Phan CW, David P, Tan YS, Naidu M, Wong KH, Kuppusamy UR, Sabaratnam V. 2014. Intrastrain comparison of the chemical composition and antioxidant activity of an edible mushroom, Pleurotus giganteus, and its potent neuritogenic properties. Sci World J 2014: 378651.
  59. Piska K, Sulkowska-Ziaja K, Muszynska B. 2017. Edible mushroom Pleurotus ostreatus (oyster mushroom) - its dietary significance and biological activity. Acta Sci Pol Hortorum Cultus 16: 151-161. https://doi.org/10.24326/asphc.2017.3.15
  60. Queiros B, Barreira JC, Sarmento AC, Ferreira IC. 2009. In search of synergistic effects in antioxidant capacity of combined edible mushrooms. Int J Food Sci Nutr 60: 160-172. https://doi.org/10.1080/09637480903153845
  61. Raman J, Nanjian R, Lakshmanan H, Ramesh V, Srikumar R. 2014. Hypolipidemic effect of Pleurotus djamor var. roseus in experimentally induced hypercholesteromic rats. Res J Pharm Biol Chem Sci 5: 581-588.
  62. Regula J, Suliburska J, Siwulski M. 2016. Bioavailability and Digestibility of Nutrients from the Dried Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes): In Vivo Experiments. Int J Med Mushrooms 18: 681-688. https://doi.org/10.1615/IntJMedMushrooms.v18.i8.40
  63. Sanchez C. 2017. Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol 2: 13-22. https://doi.org/10.1016/j.synbio.2016.12.001
  64. Sanmee R, Dell B, Lumyong P, Izumori K, Lumyong S. 2003. Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem 82: 527-532. https://doi.org/10.1016/S0308-8146(02)00595-2
  65. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  66. Sun L, He W, Xin G, Cai P, Zhang Y, Zhang Z, Wei Y, Sun B, Wen X. 2018. Volatile components, total phenolic compounds, and antioxidant capacities of worm-infected Gomphidius rutilus. Food Sci Hum Well 7: 148-155 https://doi.org/10.1016/j.fshw.2018.05.004
  67. Sun LB, Zhang ZY, Xin G, Sun BX, Bao XJ, Wei YY, Zhao XM, Xu HR. 2020. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci Technol 96: 176-187. https://doi.org/10.1016/j.tifs.2019.12.018
  68. The United States Pharmacopoeia. 2004. 27, NF 22 Revision. United States Pharmacopeial Convention, Inc., Rockville, Maryland, USA.
  69. Titas G, Aparajita S, Arpita D. 2019. Nutrition, Therapeutics and environment impact of oyster mushrooms: A low cost proteinaceous source. J Gynecol Women's Health 14: 555876.
  70. Vamanu E, Nita S. 2013. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. Biomed Res Int 2013: 313905.
  71. Vetter J. 2003. Chemical composition of fresh and conserved Agaricus bisporus mushroom. Eur Food Res Technol 217: 10-12. https://doi.org/10.1007/s00217-003-0707-2
  72. Wani BA, Bodha RH, Wani AH. 2010. Nutritional and medicinal importance of mushrooms. J Med Plants Res 4: 2598-2604. https://doi.org/10.5897/JMPR09.565
  73. Wuilloud RG, Kannamkumarath SS, Caruso JA. 2004. Multielemental Speciation Analysis of Fungi Porcini (Boletus edulis) Mushroom by Size Exclusion Liquid Chromatography with Sequential On-line UV-ICP-MS Detection. J Agric Food Chem 52: 1315-1322. https://doi.org/10.1021/jf035118o
  74. Yamamoto KT, Robinson-Cohen C, de Oliveira MC, Kostina A, Nettleton JA, Ix JH, Nguyen H, Eng J, Lima JAC, Siscovick D, Weiss NS, Kestenbaum B. 2013. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int 83:707-714. https://doi.org/10.1038/ki.2012.303
  75. Yilmaz N, Solmaz M, Turkekul I, Elmastas M. 2006. Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem 99: 168-174. https://doi.org/10.1016/j.foodchem.2005.08.017