DOI QR코드

DOI QR Code

Potential Application of Bacteriocin Produced from Lactic Acid Bacteria

  • El Issaoui, Kaoutar (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Senhaji, Nadia Skali (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Zinebi, Sanae (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Zahli, Rajae (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Haoujar, Imane (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Amajoud, Nadia (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Abrini, Jamal (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University) ;
  • Khay, El Ouardy (Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, BP: 2121. Abdelmalek Essaadi University)
  • Received : 2020.01.06
  • Accepted : 2020.03.11
  • Published : 2020.09.28

Abstract

Lactic acid bacteria prevent the contamination of food products by inhibiting proliferation of pathogenic bacteria. This is done mainly by the production of lactic acid and antimicrobial peptides (AMPS) known as bacteriocins. The interest in these molecules resides in both their antimicrobial spectrum and safety for human health. The application of bacteriocins or producer strains has been considered to avoid the development of pathogenic bacteria, as most bacteriocins have significant inhibitory activity against food pathogens, such as Listeria monocytogenes. This article describes the classification, structure, mode of action, biosynthesis, and main applications of bacteriocins in different fields: agri-food, aquaculture, and medicine.

Keywords

References

  1. Moumene H, Hasib A, Soumia A, Jaouad A. 2013. Qualite Hygienique des olives de table vendus en vrac dans la region Marrakech-Tensift El Hawz. Technol. Labo. 8: 32.
  2. Amund OD. 2016. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Can. J. Microbiol. 62: 715-725. https://doi.org/10.1139/cjm-2016-0186
  3. Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. 2016. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res. 5: 2587. https://doi.org/10.12688/f1000research.9615.1
  4. Heperkan D. 2013. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 4: 143. https://doi.org/10.3389/fmicb.2013.00143
  5. Bleve G, Tufariello M, Durante M., Perbellini E, Ramires FA, Grieco F, et al. 2014. Physico-chemical and microbiological characterization of spontaneous fermentation of Cellina di Nardo and Leccino table olives. Front. Microbiol. 5: 570.
  6. Hurtado A, Reguant C, Bordons A, Rozes N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31: 1-8. https://doi.org/10.1016/j.fm.2012.01.006
  7. Hati S, Mandal S, Prajapati JB. 2013. Novel starters for value added fermented dairy products. Curr. Res. Nutr. Food Sci. J. 1: 83-91. https://doi.org/10.12944/CRNFSJ.1.1.09
  8. Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
  9. Rubia-Soria A, Abriouel H, Lucas R, Omar NB, Martinez-Canamero M, Galvez A. 2006. Production of antimicrobial substances by bacteria isolated from fermented table olives. World J. Microbiol. Biotechnol. 22: 765-768. https://doi.org/10.1007/s11274-005-9101-5
  10. Blana VA, Polymeneas N, Tassou CC, Panagou EZ. 2016. Survival of potential probiotic lactic acid bacteria on fermented green table olives during packaging in polyethylene pouches at 4 and 20 C. Food Microbiol. 53: 71-75. https://doi.org/10.1016/j.fm.2015.09.004
  11. El-Issaoui K, Zinebi S, Abrini J, Zahli R, Amajoud N, Senhaji NS, et al. 2017. Characterization of antibacterial lactic acid bacteria isolated from Moroccan fermented olives. Biosci. Biotechnol. Res. Asia 14: 1315. https://doi.org/10.13005/bbra/2575
  12. Lopez-Cuellar M, del R, Rodriguez-Hernandez AI, Chavarria-Hernandez N. 2016. LAB bacteriocin applications in the last decade. Biotechnol. Biotechnol. Equip. 30: 1039-1050. https://doi.org/10.1080/13102818.2016.1232605
  13. Van Reenen CA, Dicks LMT. 2011. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities. A review. Arch. Microbiol. 193: 157-168. https://doi.org/10.1007/s00203-010-0668-3
  14. Orla-Jensen S. 1919. "The lactic acid bacteria, Copenhagen. Andr" Fred Host Son.
  15. Dellaglio F, De Roissart H, Torriani S, Curk MC, Janssens D. 1994. Caracteristiques generales des bacteries lactiques. Bacteries Lact. 1: 25-116.
  16. Abriouel H, Benomar N, Cobo A, Caballero N, Fuentes MAF, Perez-Pulido R, et al. 2012. Characterization of lactic acid bacteria from naturally-fermented Manzanilla Alorena green table olives. Food Microbiol. 32: 308-316. https://doi.org/10.1016/j.fm.2012.07.006
  17. Audisio MC, Apella MC. 2010. Bacteriocin-like substance produced by Lactobacillus salivarius subsp. salivarius CRL1384 with anti-Listeria and anti-Salmonella effects. Res. J. Microbiol. 5: 332-340.
  18. Matamoros S. Universite de Nantes, 2008. Caracterisation de bacteries lactiques psychrotrophes en vue de leur utilisation dans la biopreservation des aliments. Etude physiologique et moleculaire des mecanismes d'adaptation au froid. Archimer 16: 148- 189.
  19. Calo-Mata P, Arlindo S, Boehme K, de Miguel T, Pascoal A, Barros-Velazquez J. 2008. Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technol. 1: 43-63. https://doi.org/10.1007/s11947-007-0021-2
  20. Liu JY, Li AH, Ji C, Yang WM. 2009.First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China. Vet. Microbiol. 136: 314-320. https://doi.org/10.1016/j.vetmic.2008.11.027
  21. Khalid K. 2011. An overview of lactic acid bacteria. Int. J. Biosci. 1: 1-13.
  22. Walter J. 2008. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74: 4985-4996. https://doi.org/10.1128/AEM.00753-08
  23. Patrignani F, Serrazanetti DI, Mathara JM, Siroli L, Gardini F, Holzapfel WH, et al. 2016. Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containing Lactobacillus rhamnosus BFE 5264. Int. J. Dairy Technol. 69: 262-271. https://doi.org/10.1111/1471-0307.12251
  24. Kandler O. 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie. Van Leeuwenhoek 49: 209-224. https://doi.org/10.1007/BF00399499
  25. Ganzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106-117. https://doi.org/10.1016/j.cofs.2015.03.001
  26. Ganzle MG, Vermeulen N. Vogel RF. 2007. Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol. 24: 128-138. https://doi.org/10.1016/j.fm.2006.07.006
  27. World health organization, (WHO). 1-4 October 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, a joint FAO/WHO expert consultation. Cordoba, Argentina. http://www.who.int/foodsafety/publications/fs_management/probiotics/en/index.html./ 1-4 October 2001.
  28. Gomez-Gil B, Roque A, Turnbull JF. 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 191: 259-270. https://doi.org/10.1016/S0044-8486(00)00431-2
  29. Wang YB, Han JZ. 2007. The role of probiotic cell wall hydrophobicity in bioremediation of aquaculture. Aquaculture 269: 349-354. https://doi.org/10.1016/j.aquaculture.2007.04.010
  30. Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A. 2012. Probiotic mechanisms of action. Ann. Nutr. Metab. 61: 160-174. https://doi.org/10.1159/000342079
  31. Wan LYM, Chen ZJ, Shah NP, El-Nezami H. 2016. Modulation of intestinal epithelial defense responses by probiotic bacteria. Crit. Rev. Food Sci. Nutr. 56: 2628-2641. https://doi.org/10.1080/10408398.2014.905450
  32. Piquepaille C. 1987. Place des probiotiques dans le traitement de diverses pathologies intestinales. 8: 1674-1678.
  33. De Souza Barbosa M, Todorov SD, Ivanova I, Chobert JM, Haertle T, de Melo Franc BDG. 2015. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 46: 254-262. https://doi.org/10.1016/j.fm.2014.08.004
  34. Butel MJ. 2014. Probiotics, gut microbiota and health. Med. Mal. Infect. 44: 1-8. https://doi.org/10.1016/j.medmal.2013.10.002
  35. Montoro BP, Benomar N, Lavilla Lerma L, Castillo Gutierrez S, Galvez A, Abriouel H. 2016. Fermented Alorena table olives as a source of potential probiotic Lactobacillus pentosus strains. Front. Microbiol. 7: 1583.
  36. Gratia A. 1925. Sur un remarquable exemple d'antagonisme entre deux souches de coilbacille. C.R. Soc. Biol. 93:1040-1042.
  37. Hammami R, Zouhir A, Le Lay C, Hamida JB, Fliss I. 2010. Bactibase second release: a database and tool platform for bacteriocin characterization. BMC Microbiol. 10: 22. https://doi.org/10.1186/1471-2180-10-22
  38. Camargo AC, de Paula OAL, Todorov SD, Nero LA. 2016. In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl. Biochem. Biotechnol. 178: 1239-1251. https://doi.org/10.1007/s12010-015-1941-3
  39. Fox PF, Guinee TP, Cogan TM, McSweeney P. 2000. Fundamentals of Cheese Science. Aspen Publication, 638 p. Gauthersburg (Maryland, USA). ISBN 0-8342-1260-9.
  40. De Freire Bastos MC, Coelho MLV, Da Silva Santos OC. 2015. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 161: 683-700. https://doi.org/10.1099/mic.0.082289-0
  41. Zacharof MP, Lovitt RW. 2012. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2: 50-56. https://doi.org/10.1016/j.apcbee.2012.06.010
  42. Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349. https://doi.org/10.1016/0300-9084(88)90206-4
  43. Cotter PD, Ross RP, Hill C. 2013. Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 11: 95-105. https://doi.org/10.1038/nrmicro2937
  44. Alvarez-Sieiro P, Montalban-Lopez M, Mu D, Kuipers OP. 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 100: 2939-2951. https://doi.org/10.1007/s00253-016-7343-9
  45. Bierbaum G, Sahl HG. 2009. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol. 10: 2-18. https://doi.org/10.2174/138920109787048616
  46. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Cotter PD. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30: 108-160. https://doi.org/10.1039/C2NP20085F
  47. Dierksen KP, Inglis M, Tagg JR. 2000. High pharyngeal carriage rates of Streptococcus pyogenes in Dunedin school children with a low incidence of rheumatic fever. N. Z. Med. J. 113: 496-499.
  48. McAuliffe O, Ross RP, Hill C. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25: 285-308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x
  49. Avonts L, De LV. 2001. Antimicrobial potential of probiotic lactic acid bacteria. Meded. Rijksuniv. Te Gent Fak. Landbouwkd. En Toegep. Biol. Wet. 66: 543-550.
  50. Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J. 2005. Pediocin- like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J. Pept. Sci. 11: 688-696. https://doi.org/10.1002/psc.699
  51. Oppegard C, Rogne P, Emanuelsen L, Kristiansen PE, Fimland G, Nissen-Meyer J. 2007. The two-peptide class II bacteriocins: structure, production, and mode of action. J. Mol. Microbiol. Biotechnol. 13: 210-219. https://doi.org/10.1159/000104750
  52. Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-388. https://doi.org/10.1038/nrmicro1273
  53. Lazdunski CJ. 1995. Colicin import and pore formation: a system for studying protein transport across membranes? Mol. Microbiol. 16: 1059-1066. https://doi.org/10.1111/j.1365-2958.1995.tb02331.x
  54. Riley MA. 1993. Molecular mechanisms of colicin evolution. Mol. Biol. Evol. 10: 1380-1395.
  55. Balakrishnan M, Simmonds RS, Tagg JR. 2000. Dental caries is a preventable infectious disease. Aust. Dent. J. 45: 235-245. https://doi.org/10.1111/j.1834-7819.2000.tb00257.x
  56. Tomas MS J, Ocana VS, Nader-Macias ME. 2004.Viability of vaginal probiotic lactobacilli during refrigerated and frozen storage. Anaer. 10: 1-5. https://doi.org/10.1016/j.anaerobe.2004.01.002
  57. Vignolo GM, de Kairuz MN, de Ruiz Holgado AA, Oliver G. 1995. Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78: 5-10. https://doi.org/10.1111/j.1365-2672.1995.tb01665.x
  58. Zalan Z, Nemeth E, Barath A, Halasz A. 2005. Influence of growth medium on hydrogen peroxide and bacteriocin production of Lactobacillus strains. Food Technol. Biotechnol. 43: 219-225.
  59. Savijoki K, Ingmer H, Varmanen P. 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71: 394-406. https://doi.org/10.1007/s00253-006-0427-1
  60. Malheiros PS, Sant'Anna V, Todorov SD, Franco BD. 2015. Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a. Braz. J. Microbiol. 46: 825-834. https://doi.org/10.1590/S1517-838246320140279
  61. Arfani N, Nur F, Hafsan, Azrianingsih R. 2017, May. Bacteriocin production of Lactobacillus sp. from intestines of ducks (Anas domesticus L.) incubated at room temperature and antibacterial effectivity against pathogen. In AIP Conference Proceedings (Vol. 1844, No. 1, p. 030004). AIP Publishing LLC.
  62. Barman S, Ghosh R, Mandal NC. 2018. Production optimization of broad spectrum bacteriocin of three strains of Lactococcus lactis isolated from homemade buttermilk. Ann. Agrar. Sci. 16: 286-296. https://doi.org/10.1016/j.aasci.2018.05.004
  63. Marwati T, Cahyaningrum N, Widodo S, Januarsyah T. 2018. January. Inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 toward L. monocytogenes, S. thypimurium and E. coli. IOP Conference Series: Earth Environ. Sci. 102: 012091. https://doi.org/10.1088/1755-1315/102/1/012091
  64. Dortu C, Huch M, Holzapfel WH, Franz C, Thonart P. 2008. Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett. Appl. Microbiol. 47: 581-586. https://doi.org/10.1111/j.1472-765X.2008.02468.x
  65. Jasniewski J. 2008. Etude des mecanismes d'action de bacteriocines de la sous-classe Iia. These de doctorat. pp.9-55. Laboratoire de Science et Genie Alimentaires, Nancy.
  66. Dortu C, Thonart P. 2009. Les bacteriocines des bacteries lactiques: caracteristiques et interets pour la bioconservation des produits alimentaires. Biotechnol. Agron. Societe Environ. 13: 143-154.
  67. And HC, Hoover DG. 2003. Bacteriocins and their food applications. Compr. Rev. Food Sci. Food Saf. 2: 82-100.
  68. Fath MJ, Kolter R. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 995-1017. https://doi.org/10.1128/MMBR.57.4.995-1017.1993
  69. Guyonnet D, Fremaux C, Cenatiempo Y, Berjeaud JM. 2000. Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl. Environ. Microbiol. 66: 1744-1748. https://doi.org/10.1128/AEM.66.4.1744-1748.2000
  70. Bauer R, Dicks LMT. 2005. Mode of action of lipid II-targeting lantibiotics. Int. J. Food Microbiol. 101: 201-216. https://doi.org/10.1016/j.ijfoodmicro.2004.11.007
  71. Taale E, Savadogo A, Zongo C, Tapsoba F, Karou SD, Traore AS. 2016. Les peptides antimicrobiens d'origine microbienne: cas des bacteriocines. Int. J. Biol. Chem.Sci. 10: 384-399. https://doi.org/10.4314/ijbcs.v10i1.29
  72. Breukink E, De Kruijff B. 2006. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 5: 321-332. https://doi.org/10.1038/nrd2004
  73. Makhloufi KM. 2011. Caracterisation d'une bacteriocine produite par une bacterie lactique Leuconostoc pseudomesenteroides isolee du boza (Doctoral dissertation).
  74. Patton GC, Van Der Donk WA. 2005. New developments in lantibiotic biosynthesis and mode of action. Curr. Opin. Microbiol. 8: 543-551. https://doi.org/10.1016/j.mib.2005.08.008
  75. Nilsen T, Nes IF, Holo H. 2003. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69: 2975-2984. https://doi.org/10.1128/AEM.69.5.2975-2984.2003
  76. Dicks LMT, Heunis TDJ, Van Staden DA, Brand A, Noll KS, Chikindas ML. 2011. Medical and personal care applications of bacteriocins produced by lactic acid bacteria. In Prokaryotic Antimicrobial Peptides, pp. 391-421. Springer, New York, NY.
  77. Sanchez-Hidalgo M, Montalban-Lopez M, Cebrian R, Valdivia E, Martinez-Bueno M, Maqueda M. 2011. AS-48 bacteriocin: close to perfection. Cell. Mol. Life Sci. 68: 2845-2857. https://doi.org/10.1007/s00018-011-0724-4
  78. Suda S, Cotter PD, Hill C, Paul Ross R. 2012. Lacticin 3147-biosynthesis, molecular analysis, immunity, bioengineering and applications. Curr. Protein Pept. Sci. 13: 193-204. https://doi.org/10.2174/138920312800785021
  79. Fangio MF, Fritz R. 2014. Potential use of a bacteriocin-like substance in meat and vegetable food biopreservation. Int. Food Res. J. 21: 677.
  80. Alves FC, Barbosa LN, Andrade BF, Albano M, Furtado FB, Pereira AFM, et al. 2016. Inhibitory activities of the lantibiotic nisin combined with phenolic compounds against Staphylococcus aureus and Listeria monocytogenes in cow milk. J. Dairy Sci. 99: 1831-1836. https://doi.org/10.3168/jds.2015-10025
  81. Ribeiro SC, Ross RP, Stanton C, Silva CC. 2017. Characterization and application of antilisterial enterocins on model fresh cheese. J. Food Prot. 80: 1303-1316. https://doi.org/10.4315/0362-028X.JFP-17-031
  82. Kondrotiene K, Kasnauskyte N, Serniene L, Golz G, Alter T, Kaskoniene V, et al. 2018. Characterization and application of newly isolated nisin producing Lactococcus lactis strains for control of Listeria monocytogenes growth in fresh cheese. LWT. 87: 507-514. https://doi.org/10.1016/j.lwt.2017.09.021
  83. Sarantinopoulos P, Leroy F, Leontopoulou E, Georgalaki MD, Kalantzopoulos G, Tsakalidou E, et al. 2002. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int. J. Food Microbiol. 72: 125-136. https://doi.org/10.1016/S0168-1605(01)00633-X
  84. Beshkova D, Frengova G. 2012. Bacteriocins from lactic acid bacteria: microorganisms of potential biotechnological importance for the dairy industry. Eng. Life Sci. 12: 419-432. https://doi.org/10.1002/elsc.201100127
  85. El Moussaoui N, Idaomar M, Abrini J. 2014. Application of a bacteriocin-like inhibitory substance producing Enterococcus durans E204 strain, isolated from camel milk, to control Listeria monocytogenes CECT 4032 in goat jben. Ann. Microbiol. 64: 313-319. https://doi.org/10.1007/s13213-013-0666-1
  86. Rogers LA. 1928. The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J. Bacteriol. 16: 321-325. https://doi.org/10.1128/JB.16.5.321-325.1928
  87. Jozefiak D, Kieronczyk B, Juskiewicz J, Zdunczyk Z, Rawski M, Dlugosz J, et al. 2013. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One 8: e85347. https://doi.org/10.1371/journal.pone.0085347
  88. Huang E, Zhang L, Chung YK, Zheng Z, Yousef AE. 2013. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis. Biomed. Res. Int. 2013: 206917.
  89. De Lima Marques J, Funck GD, Da Silva Dannenberg G, Dos Santos Cruxen CE, El Halal SLM, et al. 2017. Bacteriocin-like substances of Lactobacillus curvatus P99: characterization and application in biodegradable films for control of Listeria monocytogenes in cheese. Food Microbiol. 63: 159-163. https://doi.org/10.1016/j.fm.2016.11.008
  90. Xie Y, Zhang M, Gao X, Shao Y, Liu H, Jin J, et al. 2018. Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. J. App. Microbiol. 125: 1108-1116. https://doi.org/10.1111/jam.13912
  91. Hotchkiss JH. 1997. Food-packaging interactions influencing quality and safety. Food Addit. Contam. 14: 601-607. https://doi.org/10.1080/02652039709374572
  92. Padgett T, Han IY, Dawson PL. 1998. Incorporation of foodgrade antimicrobial compounds into biodegradable packaging films. J. Food Prot. 61: 1330-1335. https://doi.org/10.4315/0362-028X-61.10.1330
  93. Deegan LH, Cotter PD, Hill C, Ross P. 2006. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 16: 1058-1071. https://doi.org/10.1016/j.idairyj.2005.10.026
  94. Pei J, Yue T, Yuan Y, Dai L. 2017. Activity of paracin C from lactic acid bacteria against Alicyclobacillus in apple juice: Application of a novelty bacteriocin. J. Food Saf. 37: e12350. https://doi.org/10.1111/jfs.12350
  95. Wayah SB, Philip K. 2018. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microb. Cell Fact. 17: 125. https://doi.org/10.1186/s12934-018-0972-1
  96. Mohammadian T, Alishahi M, Tabandeh MR, Ghorbanpoor M, Gharibi D, Tollabi M, Rohanizade S. 2016. Probiotic effects of Lactobacillus plantarum and L. delbrueckii ssp. bulguricus on some immune-related parameters in Barbus grypus. Aquac. Intern. 24: 225-242. https://doi.org/10.1007/s10499-015-9921-8
  97. Nguyen TTG, Nguyen TC, Leelakriangsak M, Pham TT, Pham QH, Lueangthuwapranit C, et al. 2018. Promotion of Lactobacillus plantarum on growth and resistance against acute hepatopancreatic necrosis disease pathogens in white-leg shrimp (Litopenaeus vannamei). Thai. J. Vet. Med. 48: 19-28.
  98. Banos A, Ariza JJ, Nunez C, Gil-Martinez L, Garcia-Lopez JD, Martinez-Bueno M, Valdivia E. 2019. Effects of Enterococcus faecalis UGRA10 and the enterocin AS-48 against the fish pathogen Lactococcus garvieae. Studies in vitro and in vivo. Food Microbiol. 77: 69-77. https://doi.org/10.1016/j.fm.2018.08.002
  99. Matsuura Y, Takasaki M, Miyazawa R, Nakanishi T. 2017. Stimulatory effects of heat-killed Enterococcus faecalis on cell-mediated immunity in fish. Dev. Comp. Immunol. 74: 1-9. https://doi.org/10.1016/j.dci.2017.03.029
  100. Wang YB, Tian ZQ, Yao JT, Li W. 2008. Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquac. 277: 203-207. https://doi.org/10.1016/j.aquaculture.2008.03.007
  101. Mkrtchyan H, Gibbons S, Heidelberger S, Zloh M, Limaki HK. 2010. Purification, characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus acidophilus nv Er 317/402 strain Narine. Int. J. Antimicrob. Agents. 35: 255-260. https://doi.org/10.1016/j.ijantimicag.2009.11.017
  102. Bastos MCF, Ceotto H, Coelho MLV, Nascimento JS. 2009. Staphylococcal antimicrobial peptides: relevant properties and potential biotechnological applications. Curr. Pharm. Biotechnol. 10: 38-61. https://doi.org/10.2174/138920109787048580
  103. Toualbia M, Bouras AED, Koiche M, Kerkoud M. 2018. Isolation, identification and characterization of Lactobacillus plantarum from camel milk and its antagonist effect against diarrheal bacteria. Emir. J. Food Agric. 283-287.
  104. Sirichokchatchawan W, Temeeyasen G, Nilubol D. Prapasarakul N. 2018. Protective effects of cell-free supernatant and live lactic acid bacteria isolated from Thai pigs against a pandemic strain of porcine epidemic diarrhea virus. Probiotics Antimicrob. Proteins 10: 383-390. https://doi.org/10.1007/s12602-017-9281-y
  105. Maldonado NC, Chiaraviglio J, Bru E, De Chazal L, Santos V, Nader-Macias MEF. 2018. Effect of milk fermented with lactic acid bacteria on diarrheal incidence, growth performance and microbiological and blood profiles of newborn dairy calves. Probiotics Antimicrob. Proteins 10: 668-676. https://doi.org/10.1007/s12602-017-9308-4
  106. Ren C, Zhang Q, De Haan BJ, Zhang H, Faas MM, De Vos P. 2016. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation. Sci. Rep. 6: 34561. https://doi.org/10.1038/srep34561
  107. Deidda F, Amoruso A, Nicola S, Graziano T, Pane M, Mogna L. 2018. New approach in acne therapy: A specific bacteriocin activity and a targeted Anti IL-8 property in just 1 probiotic strain, the L. salivarius LS03. J. Clin. Gastroenterol. 52: S78-S81. https://doi.org/10.1097/MCG.0000000000001053
  108. De Kwaadsteniet M, Doeschate KT, Dicks LMT. 2009. Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett. Appl. Microbiol. 48: 65-70. https://doi.org/10.1111/j.1472-765X.2008.02488.x
  109. Van Staden DA, Brand AM, Endo A, Dicks LMT, Nisin F, 2011. Intraperitoneally injected, may have a stabilizing effect on the bacterial population in the gastro-intestinal tract, as determined in a preliminary study with mice as model. Lett. Appl. Microbiol. 53: 198-201. https://doi.org/10.1111/j.1472-765X.2011.03091.x
  110. De Gregorio PR, Tomas MSJ, Terraf MCL, Nader-Macias MEF. 2014. In vitro and in vivo effects of beneficial vaginal lactobacilli on pathogens responsible for urogenital tract infections. J. Med. Microbiol. 63: 685-696. https://doi.org/10.1099/jmm.0.069401-0
  111. Rivas FP, Cayre ME, Campos CA, Castro MP. 2018. Natural and artificial casings as bacteriocin carriers for the biopreservation of meats products. J. Food Saf. 38: e12419.
  112. Zhang J, Liu G, Li P, Qu Y. 2010. Pentocin 31-1, a novel meatborne bacteriocin and its application as biopreservative in chillstored tray-packaged pork meat. Food Control 21: 198-202. https://doi.org/10.1016/j.foodcont.2009.05.010
  113. Kato T, Maeda K, Kasuya H, Matsuda T. 1999. Complete growth inhibition of Bacillus subtilis by nisin-producing lactococci in fermented soybeans. Biosci. Biotechnol. Biochem. 63: 642-647. https://doi.org/10.1271/bbb.63.642
  114. Arief II, Wulandari Z, Sinaga ES, Situmorang DM. 2017. Application of Purified Bacteriocin from Lactobacillus plantarum IIA-1A5 as a Bio-preservative of Beef Sausage. Pak. J. Nutr. 16: 444-450. https://doi.org/10.3923/pjn.2017.444.450
  115. Kaur B, Balgir PP, Mittu B, Kumar B, Garg N. 2013. Biomedical applications of fermenticin HV6b isolated from Lactobacillus fermentum HV6b MTCC10770. Biomed. Res. Int. 2013: 168438.
  116. Van Doan H, Doolgindachbaporn S, Suksri A. 2016. Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). Fish Physiol. Biochem. 42: 1427-1440. https://doi.org/10.1007/s10695-016-0230-6
  117. Lv X, Ma H, Sun M, Lin Y, Bai F, Li J, Zhang B. 2018. A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlassfish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control 89: 22-31. https://doi.org/10.1016/j.foodcont.2018.02.002
  118. Grilli E, Messina MR, Catelli E, Morlacchini M, Piva A. 2009. Pediocin A improves growth performance of broilers challenged with Clostridium perfringens. Poult. Sci. 88: 2152-2158. https://doi.org/10.3382/ps.2009-00160
  119. Safari R, Adel M, Lazado CC, Caipang CMA, Dadar M. 2016. Hostderived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish Shellfish Immunol. 52: 198-205. https://doi.org/10.1016/j.fsi.2016.03.020
  120. Furtado DN, Todorov SD, Landgraf M, Destro MT, Franco BD. 2015. Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese. Braz. J. Microbiol. 46: 201-206. https://doi.org/10.1590/S1517-838246120130761
  121. Anbi AA, Razavilar V, Naghadehi MN, Osalou YAA. 2018. The effects of Lactococcus lactis subsp. lactis and its supernatant on some bacteriological and sensory values in Rainbow trout (Onchorhynchus mykiss) fillets. Microbiol. Res. 9: 7431.
  122. Ahire JJ, Dicks LM. 2015. Nisin incorporated with 2, 3-dihydroxybenzoic acid in nanofibers inhibits biofilm formation by a methicillin-resistant strain of Staphylococcus aureus. Probiotics Antimicrob. Proteins 7: 52-59. https://doi.org/10.1007/s12602-014-9171-5
  123. Kapila Y, Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, et al. 2015. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front. Microbiol. 6: 617. https://doi.org/10.3389/fmicb.2015.00617
  124. Barman S, Ghosh R, Mandal NC. 2014. Use of bacteriocin producing Lactococcus lactis subsp. lactis LABW4 to prevent Listeria monocytogenes induced spoilage of meat. Food Nutr. Sci. 5: 2115. https://doi.org/10.4236/fns.2014.522224
  125. Yildirim Z, Oncul N, Yildirim M, Karabiyikli S. 2016. Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation agents. Acta Aliment. 45: 486-492. https://doi.org/10.1556/066.2016.45.4.4
  126. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H. 2006. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70: 564-582. https://doi.org/10.1128/MMBR.00016-05
  127. Sivarooban T, Hettiarachchy NS, Johnson MG. 2008. Transmission electron microscopy study of Listeria monocytogenes treated with nisin in combination with either grape seed or green tea extract. J. Food Prot. 71: 2105-2109. https://doi.org/10.4315/0362-028X-71.10.2105
  128. Field D, Daly K, O'Connor PM, Cotter PD, Hill C, Ross RP. 2015. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant essential oils for controlling Listeria monocytogenes. Appl. Environ. Microbiol. 81: 2762-2769. https://doi.org/10.1128/AEM.00070-15
  129. Field D, O'Connor R, Cotter PD, Ross RP, Hill C. 2016. In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Front. Microbiol. 7: 508. https://doi.org/10.3389/fmicb.2016.00508
  130. Field D, Seisling N, Cotter PD, Ross RP, Hill C. 2016. Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Front. Microbiol. 7: 1713.
  131. Hanchi H, Hammami R, Gingras H, Kourda R, Bergeron MG, Ben Hamida J, et al. 2017. Inhibition of MRSA and of Clostridium difficile by durancin 61A: synergy with bacteriocins and antibiotics. Future Microbiol. 12: 205-212. https://doi.org/10.2217/fmb-2016-0113

Cited by

  1. Recent advances in bio-preservatives impacts of lactic acid bacteria and their metabolites on aquatic food products vol.44, pp.no.pb, 2020, https://doi.org/10.1016/j.fbio.2021.101440