DOI QR코드

DOI QR Code

Medium Optimization for Cell Growth and Metabolite Formation from Haematococcus sp. under Mixotrophic Cultivation

혼합영양 조건하에서 Haematococcus sp.의 배지 최적화 및 대사산물 생산

  • Kim, Hyo Seon (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • Received : 2020.04.22
  • Accepted : 2020.06.23
  • Published : 2020.09.28

Abstract

In this study, the medium optimization for cell growth and metabolite formation of Haematococcus sp. under mixotrophic cultivation was investigated. As a result, modified MS medium was selected as the basal medium; glucose was selected as the carbon source, with an optimum concentration of 10 g/l, and potassium nitrate was chosen as the nitrogen source, with an optimum concentration of 1.9 g/l. Under optimum conditions, Haematococcus sp. demonstrated an increase in biomass concentration from 0.18 gDW/l to 5.58 gDW/l in 14 days, after which there was a 31-fold increase in its growth. At the same time, the concentrations of chlorophyll and carotenoids were 172.16 mg/l and 42.33 mg/l, respectively. This work will contribute to the basic data for mass cultivation of microalgae.

Haematococcus sp.를 대상으로 mixotroph 형태에서 배양을 위한 배지 최적화 연구를 수행하였다. 기본 배지로는 modified MS 배지가 적절했으며, 탄소원으로는 glucose가, 그리고 농도는 10 g/l가 적합하였다. 질소원으로는 KNO3를 선정하였으며, 농도는 1.9 g/l이 최적이었다. 최적의 배지조건에서 Haematococcus sp.를 초기 접종량(0.18 g/l)로 접종하여 14일 후에 5.58 ± 0.25 g/l로 성장하였으며, 이는 건조 세포중량 기준으로 약 31배의 성장한 것이다. 이때 생성된 클로로필은 172.16 ± 7.79 mg/l였으며, 카로티노이드는 42.33 ± 1.91 mg/l이었다. 본 연구의 결과는 추후 미세조류 대량 배양과 대사산물의 생산에 이용가능한 기초자료가 될 수 있을 것이라 판단된다.

Keywords

References

  1. Lee SP, Kim HS. 2013. Biodiesel using microalgae, pp. 6-11. Korea Institute of Science and Technology Information.
  2. Rossler PG. 1990. Environmental control of glycerolipid metabolism in microalgae: Commercial implications and future research direction. J. Phycol. 26: 393-399. https://doi.org/10.1111/j.0022-3646.1990.00393.x
  3. Yun YS, Part JM, Yang JW. 1996. Enhancement of $CO_2$ tolerance of Chlorella Vulgaris by gradual increase of $CO_2$ concentration. Biotechnol. Technol. 10: 713-716.
  4. Percival E, Foyle RAH. 1989. The extracellular polysaccharides od Porphyridium cruentum and Porphyridium aerugineum. Carbohydr. Res. 72: 165-172. https://doi.org/10.1016/S0008-6215(00)83932-4
  5. Viso AC, Pesando D, Baby C. 1987. Antibacterial and antifungal propertise of some marine diatoms in culture. Botanica Marina 30: 41.
  6. Oh HM, Choi AR, Mheen TI. 2003. High-value materials from microalgae. Korea Research Institute of Bioscience and Biotechnology, Korea.
  7. Lee IS, Lee HY, Kim HL, Ko KH, Chang HC, Kim IC. 2008. Effect of metal ions on stabilization of Codium fragile's pigments. Korean J. Food Preserv. 15: 352-360.
  8. Lee NY, Kim YK, Choi ID, Cho SK, Hyun JN, Choi JS, et al. 2010. Biological activity of barley (Hordeum vulgare L.) and barley byproduct extracts. Food Sci. Biotechnol. 19: 795-791. https://doi.org/10.1007/s10068-010-0110-2
  9. Rao AV, Rao LG. 2007. Carotenoids and human health. Pharmacol. Res. 55: 207-216. https://doi.org/10.1016/j.phrs.2007.01.012
  10. Stahl W, Sies H. 2005. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta. 1740: 101-107. https://doi.org/10.1016/j.bbadis.2004.12.006
  11. Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J. 1996. Evolution of pigment composition in Chlorella vulgaris. Bioresour. Technol. 57: 157-159. https://doi.org/10.1016/0960-8524(96)00058-2
  12. Lorenz RT, Cysewski GR. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18: 160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  13. Li HB, Jiang Y, Chen F. 2002. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. J. Agric. Food Chem. 50: 1070-1072. https://doi.org/10.1021/jf010220b
  14. Bowers J. 1992. Food theory and applications, Macmillan Publishing Company. pp. 726-729. New York.
  15. Jung SJ, Kim GE. 2001. The changes of ascorbic acid and chlorophylls contents in gochu-jangachi during fermentation. J. Korean Soc. Food Sci. Nutr. 30: 814-818.
  16. Thompson AS, Rhodes JC, Pettman I. 1988. Natural Environmental Research Council Culture Collection of Algae Protozoa-Catalogue of Strains. pp. 22. Freshwater Biology Association (UK), Ambleside.
  17. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
  18. Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. pp. 26-60. In Smith, W.L. and Chanley, M.H. (Eds) Culture of Marine Invertebrate Animals, Plenum Press, New York.
  19. Choi SJ, Lee JH. 2015. Characteristic of Arthrospira platensis enhanced antioxidant activity. Korean Soc. Biotecnol. Bioeng. J. 30: 119-124.