DOI QR코드

DOI QR Code

Investigation of Flavor-Forming Starter Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803 in Miniature Gouda-Type Cheeses

  • Lee, Hye Won (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Kim, In Seon (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kil, Bum Ju (WCU Biomodulation Major and Center for Food and Bioconvergence, Seoul National University) ;
  • Seo, Eunsol (WCU Biomodulation Major and Center for Food and Bioconvergence, Seoul National University) ;
  • Park, Hyunjoon (Institute of Green-Bio Science and Technology, Seoul National University) ;
  • Ham, Jun-Sang (National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University) ;
  • Huh, Chul Sung (Graduate School of International Agricultural Technology, Seoul National University)
  • Received : 2020.04.02
  • Accepted : 2020.06.02
  • Published : 2020.09.28

Abstract

Lactic acid bacteria (LAB) play an important role in dairy fermentations, notably as cheese starter cultures. During the cheese production and ripening period, various enzymes from milk, rennet, starter cultures, and non-starter LABs are involved in flavor formation pathways, including glycolysis, proteolysis, and lipolysis. Among these three pathways, starter LABs are particularly related to amino acid degradation, presumably as the origins of major flavor compounds. Therefore, we used several enzymes as major criteria for the selection of starter bacteria with flavor-forming ability. Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803, isolated from Korean raw milk and cucumber kimchi, were confirmed by using multiplex PCR and characterized as starter bacteria. The combinations of starter bacteria were validated in a miniature Gouda-type cheese model. The flavor compounds of the tested miniature cheeses were analyzed and profiled by using an electronic nose. Compared to commercial industrial cheese starters, selected starter bacteria showed lower pH, and more variety in their flavor profile. These results demonstrated that LDTM6802 and LDTM6803 as starter bacteria have potent starter properties with a characteristic flavor-forming ability in cheese.

Keywords

References

  1. Brown-Riggs C. 2016. Nutrition and health disparities: The role of dairy in improving minority health outcomes. Int. J. Environ. Res. Public Health 13: 28. https://doi.org/10.3390/ijerph13010028
  2. van den Berg G, Meijer WC, Dusterhöft EM, Smit G. 2004. Gouda and related cheeses. Cheese: Chemistry. Physics Microbiology 2: 103-140. https://doi.org/10.1016/S1874-558X(04)80041-1
  3. Mellgren J. 2005. All cheese considered: Gouda, Bus. Source Complete 26: 11-19.
  4. Jung HJ, Ganesan P, Lee SJ, Kwak HS. 2013. Comparative study of flavor in cholesterol-removed Gouda cheese and Gouda cheese during ripening. J. Dairy Sci. 96: 1972-1983. https://doi.org/10.3168/jds.2012-5644
  5. Toelstede S, Hofmann T. 2008. Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J. Agric. Food Chem. 56: 2795-2804. https://doi.org/10.1021/jf7036533
  6. Frece J, Cvrtila J, Topic I, Delas F, Markov K. 2014. Lactococcus lactis ssp. lactis as potential functional starter culture. Food Technol. Biotechnol. 52: 489-494. https://doi.org/10.17113/ftb.52.04.14.3794
  7. Ayad EHE, Verheul A, Wouters JTM, Smit G. 2000. Application of wild starter cultures for flavor development in pilot plant cheese making. Int. Dairy J. 10: 169-179. https://doi.org/10.1016/S0958-6946(00)00041-8
  8. Kieronczyk A, Skeie S, Langsrud T, Yvon M. 2003. Cooperation between Lactococcus lactis and nonstarter Lactobacilli in the formation of cheese aroma from amino acids. Appl. Environ. Microbiol. 69: 734-739. https://doi.org/10.1128/AEM.69.2.734-739.2003
  9. Drici H, Gilbert C, Kihal M, Atlan D. 2010. Atypical citrate fermenting Lactococcus lactis strains isolated from dromedary's milk. J. Appl. Microbiol. 108: 647-657. https://doi.org/10.1111/j.1365-2672.2009.04459.x
  10. Silva HLA, Balthazar CF, Esmerino EA, Vieira AH, Cappato LP, Neto RPC, et al. 2017. Effect of sodium reduction and flavor enhancer addition on probiotic Prato cheese processing. Food Res. Int. 99: 247-255. https://doi.org/10.1016/j.foodres.2017.05.018
  11. Singh TK, Drake MA, Cadwallader KR. 2003. Flavor of cheddar cheese: A chemical and sensory perspective. Comp. Rev. Food Sci. 2: 139-162.
  12. Gutierrez-Mendez N, Vallejo-Cordoba B, Gonzalez-Cordova AF, Nevarez-Moorillon GV, Rivera-Chavira B. 2008. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis. J. Dairy Sci. 91: 49-57. https://doi.org/10.3168/jds.2007-0193
  13. Zheng X, Liu F, Shi X, Wang B, Li K, Li B, et al. 2018. Dynamic correlations between microbiota succession and flavor development involved in the ripening of Kazak artisanal cheese. Food Res. Int. 105: 733-742. https://doi.org/10.1016/j.foodres.2017.12.007
  14. Starrenburg MJC, Hugenholtz J. 1991. Citrate fermentation by Lactococcus and Leuconostoc spp. Appl. Environ. Microbiol. 57: 3535-3540. https://doi.org/10.1128/AEM.57.12.3535-3540.1991
  15. Tjwan Tan P, Poolman B, Konings W. 1993. Proteolytic enzymes of Lactococcus lactis. J. Dairy Res. 60: 269-286. https://doi.org/10.1017/S0022029900027606
  16. Smit G, Smit BA, Engels WJ. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 29: 591-610. https://doi.org/10.1016/j.fmrre.2005.04.002
  17. Molimard P, Spinnler HE. 1996. Review: Compounds involved in the flavor of surface mold-ripened cheeses: Origins and properties. J. Dairy Sci. 79: 169-184. https://doi.org/10.3168/jds.S0022-0302(96)76348-8
  18. Cogan TM, Barbosa M, Beuvier E, Bianchi-Salvadori B, Cocconcelli PS, Fernandes I, et al. 1997. Characterization of the lactic acid bacteria in artisanal dairy products. J. Dairy Res. 64: 409-421. https://doi.org/10.1017/S0022029997002185
  19. Ayad EHE, Verheul A, de Jong C, Wouters JTM, Smit G. 1999. Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. Int. Dairy J. 9: 725-735. https://doi.org/10.1016/S0958-6946(99)00140-5
  20. Randazzo CL, De Luca S, Todaro A, Restuccia C, Lanza CM, Spagna G, et al. 2007. Preliminary characterization of wild lactic acid bacteria and their abilities to produce flavor compounds in ripened model cheese system. J. Appl. Microbiol. 103: 427-435. https://doi.org/10.1111/j.1365-2672.2006.03261.x
  21. Peralta GH, Bergamini CV, Hynes ER. 2016. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci. Braz. J. Microbiol. 47: 741-748. https://doi.org/10.1016/j.bjm.2016.04.005
  22. El Soda M, Ahmed N, Omran N, Osman G, Morsi A. 2003. Isolation, identification and selection of lactic acid bacteria cultures for cheese making. Emir. J. Agric. Sci. 15: 51-71. https://doi.org/10.9755/ejfa.v15i2.5006
  23. Hynes E, Ogier JC, Delacroix-Buchet A. 2000. Protocol for the manufacture of miniature washed-curd cheeses under controlled microbiological conditions. Int. Dairy J. 10: 673-681. https://doi.org/10.1016/S0958-6946(00)00100-X
  24. Shakeel-Ur-Rehman, F PF, McSweeney PLH, Madkor SA, Farkye NY. 2001. Alternatives to pilot plant experiments in cheese‐ripening studies. Int. J. Dairy Technol. 54: 121-126. https://doi.org/10.1046/j.1364-727x.2001.00025.x
  25. Bosset JO, Gauch R. 1993. Comparison of the volatile flavour compounds of six european 'AOC' cheeses by using a new dynamic headspace GC-MS method. Int. Dairy J. 3: 359-377. https://doi.org/10.1016/0958-6946(93)90023-S
  26. Thage BV, Houlberg U, Ardo Y. 2004. Amino acid transamination in permeabilised cells of Lactobacillus helveticus, Lb. paracasei and Lb. danicus. J. Dairy Res. 71: 461-470. https://doi.org/10.1017/S0022029904000470
  27. Di Cagno R, Quinto M, Corsetti A, Minervini F, Gobbetti M. 2006. Assessing the proteolytic and lipolytic activities of single strains of mesophilic lactobacilli as adjunct cultures using a caciotta cheese model system. Int. Dairy J. 16: 119-130. https://doi.org/10.1016/j.idairyj.2005.01.012
  28. Lacroix N, St-Gelais D, Champagne CP, Fortin J, Vuillemard JC. 2010. Characterization of aromatic properties of old-style cheese starters. J. Dairy Sci. 93: 3427-3441. https://doi.org/10.3168/jds.2009-2795
  29. Ong L, Henriksson A, Shah NP. 2006. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium sp. and influence of these bacteria on proteolytic patterns and production of organic acid. Int. Dairy J. 16: 446-456. https://doi.org/10.1016/j.idairyj.2005.05.008
  30. Exterkate FA, Lagerwerf FM, Haverkamp J, van Schalkwijk S. 1997. The selectivity of chymosin action on ${\alpha}s1$- and $\beta$-caseins in solution is modulated in cheese. Int. Dairy J. 7: 47-54. https://doi.org/10.1016/S0958-6946(96)00047-7
  31. Liu SQ, Holland R, Crow VL. 2001. Purification and properties of intracellular esterases from Streptococcus thermophilus. Int. Dairy J. 11: 27-35. https://doi.org/10.1016/S0958-6946(01)00035-8
  32. Van Leuven I, Van Caelenberg T, Dirinck P. 2008. Aroma characterization of Gouda-type cheeses. Int. Dairy J. 18: 790-800. https://doi.org/10.1016/j.idairyj.2008.01.001
  33. Helinck S, Le Bars D, Moreau D, Yvon M. 2004. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids. Appl. Environ. Microbiol. 70: 3855-3861. https://doi.org/10.1128/AEM.70.7.3855-3861.2004