DOI QR코드

DOI QR Code

Incidental findings of temporomandibular joint osteoarthritis and its variability based on age and sex

  • Alzahrani, Adel (Division of Oral and Maxillofacial Radiology, Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine) ;
  • Yadav, Sumit (Division of Orthodontics, University of Connecticut School of Dental Medicine) ;
  • Gandhi, Vaibhav (Division of Orthodontics, University of Connecticut School of Dental Medicine) ;
  • Lurie, Alan G. (Division of Oral and Maxillofacial Radiology, Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine) ;
  • Tadinada, Aditya (Division of Oral and Maxillofacial Radiology, Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine)
  • Received : 2020.04.01
  • Accepted : 2020.06.12
  • Published : 2020.09.30

Abstract

Purpose: This study investigated the prevalence of temporomandibular joint osteoarthritis (TMJ-OA) using the Research Diagnostic Criteria for Temporomandibular Disorders image analysis criteria, assessed the severity of incidental osteoarthritic changes affecting the TMJ, and evaluated the correlations of sex and age with the prevalence and severity of TMJ-OA. Materials and Methods: This retrospective study assessed 145 randomly selected cone-beam computed tomography scans (261 TMJs) from the authors' institutional maxillofacial radiology archive following the application of inclusion and exclusion criteria. The criteria described by Ahmad et al. were used to determine whether each TMJ was affected by OA, and the severity of the osteoarthritic changes was scored for each joint based on the method described by Alexiou et al. The chi-square, McNemar, Bhapkar chi-square, and Stuart-Maxwell chi-square tests were applied to evaluate the significance of the relationships between variables(age and sex). Results: Sixteen TMJs (6.1%) had no OA, 74 (28.6%) were indeterminate for OA, and 171 (65.5%) had OA. Flattening and sclerosis were observed in 86.6% and 12.3% of cases, respectively, while resorption was observed in 7.3% of the joints. Only 21 (8.1%) of the examined TMJs had subchondral cysts. Erosion of the articular eminence was observed in 58 (22.1%) cases, while sclerosis and resorption were found in 68 (25.9%) and 16 (6.1%) TMJs, respectively. Conclusion: Female patients had a higher prevalence and severity of TMJ-OA than male patients. The prevalence and severity of TMJ-OA increased with age, with peaks in the fifth and seventh decades of life.

Keywords

References

  1. Okeson JP. Etiology of functional disturbances in the masticatory system. In: management of temporomandibular disorders and occlusion. 7th ed. St. Louis: Elsevier/Mosby; 2013. p. 102-28.
  2. Okeson JP. Functional anatomy and biomechanics of the masticatory system. In: management of temporomandibular disorders and occlusion. 7th ed. St. Louis: Elsevier/Mosby; 2013. p. 2-20.
  3. Wadhwa S, Kapila S. TMJ disorders: future innovations in diagnostics and therapeutics. J Dent Educ 2008; 72: 930-47. https://doi.org/10.1002/j.0022-0337.2008.72.8.tb04569.x
  4. Surya Sudhakar GV, Laxmi MS, Rahman T, Anand DS. Longterm management of temporomandibular joint degenerative changes and osteoarthritis: an attempt. Clin Cancer Investig J 2018; 7: 90-6. https://doi.org/10.4103/ccij.ccij_13_18
  5. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res 2008; 87: 296-307. https://doi.org/10.1177/154405910808700406
  6. Mejersjo C, Hollender L. Radiography of the temporomandibular joint in female patients with TMJ pain or dysfunction. Acta Radiol Diagn (Stockh) 1984; 25: 169-76. https://doi.org/10.1177/028418518402500303
  7. Song H, Lee JY, Huh K, Park JW. Long-term changes of temporomandibular joint osteoarthritis on computed tomography. Sci Rep 2020; 10: 6731. https://doi.org/10.1038/s41598-020-63493-8
  8. Milan SB. Temporomandibular disorders: an evidence-based approach to diagnosis and treatment. In: Laskin DM, Greene CS, Hylander WL. TMJ osteoarthritis. Hanover Park, IL: Quintessence Pub.; 2006. p. 105-23.
  9. de Leeuw R, Boering G, Stegenga B, de Bont LG. Radiographic signs of temporomandibular joint osteoarthrosis and internal derangement 30 years after nonsurgical treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995; 79: 382-92. https://doi.org/10.1016/S1079-2104(05)80233-1
  10. Gynther GW, Tronje G, Holmlund AB. Radiographic changes in the temporomandibular joint in patients with generalized osteoarthritis and rheumatoid arthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 81: 613-8. https://doi.org/10.1016/S1079-2104(96)80058-8
  11. Kalladka M, Quek S, Heir G, Eliav E, Mupparapu M, Viswanath A. Temporomandibular joint osteoarthritis: diagnosis and long-term conservative management: a topic review. J Indian Prosthodont Soc 2014; 14: 6-15. https://doi.org/10.1007/s13191-013-0321-3
  12. Benhardt O, Biffar R, Kocher T, Meyer G. Prevalence and clinical signs of degenerative temporomandibular joint changes validated by magnetic resonance imaging in a non-patient group. Ann Anat 2007; 189: 342-6. https://doi.org/10.1016/j.aanat.2007.02.008
  13. Schmitter M, Essig M, Seneadza V, Balke Z, Schroder J, Rammelsberg P. Prevalence of clinical and radiographic signs of osteoarthrosis of the temporomandibular joint in an older persons community. Dentomaxillofacial Radiol 2010; 39: 231-4. https://doi.org/10.1259/dmfr/16270943
  14. Vrbanovic E, Alajbeg IZ. A young patient with temporomandibular joint osteoarthritis: case report. Acta Stomatol Croat 2017; 51: 232-9. https://doi.org/10.15644/asc51/3/7
  15. DAmbrosia RD. Epidemiology of osteoarthritis. Orthopedics 2005; 28 (2 Suppl): s201-5.
  16. Bagge E, Bjelle A, Eden S, Svanborg A. Osteoarthritis in the elderly: clinical and radiological findings in 79 and 85 year olds. Ann Rheum Dis 1991; 50: 535-9. https://doi.org/10.1136/ard.50.8.535
  17. Ohlmann B, Rammelsberg P, Henschel V, Kress B, Gabbert O, Schmitter M. Prediction of TMJ arthralgia according to clinical diagnosis and MRI findings. Int J Prosthodont 2006; 19: 333-8.
  18. John MT, Dworkin SF, Mancl LA. Reliability of clinical temporomandibular disorder diagnoses. Pain 2005; 118: 61-9. https://doi.org/10.1016/j.pain.2005.07.018
  19. Ahmad M, Hollender L, Anderson Q, Kartha K, Ohrbach R, Truelove EL, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 844-60. https://doi.org/10.1016/j.tripleo.2009.02.023
  20. Alexiou K, Stamatakis H, Tsiklakis K. Evaluation of the severity of temporomandibular joint osteoarthritic changes related to age using cone beam computed tomography. Dentomaxillofac Radiol 2009; 38: 141-7. https://doi.org/10.1259/dmfr/59263880
  21. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartilage 2006; 14: 13-29. https://doi.org/10.1016/j.joca.2005.07.014
  22. Cevidanes LH, Hajati AK, Paniagua B, Lim PF, Walker DG, Palconet G, et al. Quantification of condylar resorption in temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 110-7. https://doi.org/10.1016/j.tripleo.2010.01.008
  23. Kurita H, Koike T, Narikawa J, Nakatsuka A, Kobayashi H, Kurashina K. Relationship between alteration of horizontal size and bony morphological change in the mandibular condyle. Dentomaxillofac Radiol 2003; 32: 355-8. https://doi.org/10.1259/dmfr/70038602
  24. Brooks SL, Westesson PL, Eriksson L, Hansson LG, Barsotti JB. Prevalence of osseous changes in the temporomandibular joint of asymptomatic persons without internal derangement. Oral Surg Oral Med Oral Pathol 1992; 73: 118-22. https://doi.org/10.1016/0030-4220(92)90168-P
  25. Massilla Mani F, Sivasubramanian SS. A study of temporomandibular joint osteoarthritis using computed tomographic imaging. Biomed J 2016; 39: 201-6. https://doi.org/10.1016/j.bj.2016.06.003
  26. Emshoff R, Rudisch A. Validity of clinical diagnostic criteria for temporomandibular disorders: clinical versus magnetic resonance imaging diagnosis of temporomandibular joint internal derangement and osteoarthrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 91: 50-5. https://doi.org/10.1067/moe.2001.111129
  27. Wiberg B, Wanman A. Signs of osteoarthrosis of the temporomandibular joints in young patients: a clinical and radiographic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 86: 158-64. https://doi.org/10.1016/S1079-2104(98)90118-4
  28. Zhao YP, Zhang ZY, Wu YT, Zhang WL, Ma XC. Investigation of the clinical and radiographic features of osteoarthrosis of the temporomandibular joints in adolescents and young adults. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: e27-34.
  29. Schmidt M, Hartung R, Capellino S, Cutolo M, Pfeifer-Leeg A, Straub RH. Estrone/17beta-estradiol conversion to, and tumor necrosis factor inhibition by, estrogen metabolites in synovial cells of patients with rheumatoid arthritis and patients with osteoarthritis. Arthritis Rheum 2009; 60: 2913-22. https://doi.org/10.1002/art.24859
  30. Chen J, Kamiya Y, Polur I, Xu M, Choi T, Kalajzic Z, et al. Estrogen via estrogen receptor beta partially inhibits mandibular condylar cartilage growth. Osteoarthr Cartiliage 2014; 22: 1861-8. https://doi.org/10.1016/j.joca.2014.07.003
  31. Wang XD, Kou XX, Meng Z, Bi RY, Liu Y, Zhang JN, et al. Estrogen aggravates iodoacetate-induced temporomandibular joint osteoarthritis. J Dent Res 2013; 92: 918-24. https://doi.org/10.1177/0022034513501323
  32. Hu F, Zhu W, Wang L. MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol 2013; 58: 192-9. https://doi.org/10.1016/j.archoralbio.2012.08.013
  33. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010; 26: 355-69. https://doi.org/10.1016/j.cger.2010.03.001
  34. Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 2010; 24: 15-26. https://doi.org/10.1016/j.berh.2009.08.006
  35. Aigner T, Hemmel M, Neureiter D, Gebhard PM, Zeiler G, Kirchner T, et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001; 44: 1304-12. https://doi.org/10.1002/1529-0131(200106)44:6<1304::AID-ART222>3.0.CO;2-T
  36. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 2005; 120: 513-22. https://doi.org/10.1016/j.cell.2005.02.003
  37. Campisi J, dAdda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729-40. https://doi.org/10.1038/nrm2233

Cited by

  1. Gender Differences in Clinical Characteristics of Korean Temporomandibular Disorder Patients vol.11, pp.8, 2021, https://doi.org/10.3390/app11083583
  2. Temporomandibular joint aging and potential therapies vol.13, pp.14, 2021, https://doi.org/10.18632/aging.203332
  3. PRMT1 promotes extracellular matrix degradation and apoptosis of chondrocytes in temporomandibular joint osteoarthritis via the AKT/FOXO1 signaling pathway vol.141, 2020, https://doi.org/10.1016/j.biocel.2021.106112