DOI QR코드

DOI QR Code

압축 유동하에 있는 시멘트 페이스트의 유변학적 거동에 관한 모델링

Modeling on Rheological Behavior of Cement Paste under Squeeze Flow

  • 민병현 (동의대학교 기계자동차로봇부품공학부)
  • Min, Byeong-Hyeon (Division of Mechanical, Automobile, Robot Component Engineering, Dong-eui University)
  • 투고 : 2020.06.08
  • 심사 : 2020.09.04
  • 발행 : 2020.09.30

초록

압축 유동하에서 측정된 시멘트 페이스트의 수직 응력은 변형률의 증가에 따라 변형률이 0.0003에서 0.003 사이 구간인 탄성 고체 구간과 변형률이 0.003에서 0.8 사이 구간인 변형률 경화 구간으로 나누어진다. 두 구간 중 변형률 경화 영역에서 유변학적 특성을 분석하기 위해 모델링 식이 제안되었다. 첫째, 유체 거동의 관점에서, 지수법칙 일관성 지수 m=700 및 멱지수 n=0.2를 갖는 지수법칙 비뉴토니언 모델이 적용되었다. 적용 결과는 탄성 고체 구간을 제외하고는 실험 결과와 좋은 일치를 보여주었다. 둘째, 연성 고체 거동의 관점에서 힘 평형 모델이 적용되었으며, 하중을 측정하는 센서부와 시멘트 페이스트 표면 간의 마찰 계수가 실험데이터에 반구간탐색법을 적용하여 변형률의 다항식으로 도출되었다. 적용 결과는 변형률이 0.003에서 0.3 사이 구간인 중간 영역에서만 실험 결과와 좋은 일치를 보여주었다. 따라서, 압축 유동 하의 시멘트 페이스트의 유변학적 거동은 변형률 경화 구간에서 연성 고체 거동의 관점보다는 지수법칙 비뉴토니언 유체 거동의 관점에서 실험 결과와 더 일치함을 보여주었다.

The normal stress of cement paste measured under squeeze flow is divided into an elastic solid region at strains between 0.0003 and 0.003 and a strain-hardening region at strains of 0.003 and 0.8. A modeling equation at the strain-hardening region was proposed. First, from the viewpoint of fluid behavior, the power-law non-Newtonian fluid model, with a power-law consistency (m) of 700 and a power index (n) of 0.2, was applied. The results showed good agreement with the experimental results except for an elastic solid region. Second, from the viewpoint of ductile yielding solid behavior, the force balance model was applied, and the friction coefficient between the sensor part measuring the load and the surface of the cement paste was derived as a polynomial of the normal strain by applying the half-interval search method to the experimental data. The results showed good agreement with the experimental results only in the middle normal strain region at strains between 0.003 and 0.3. The rheological behavior of the cement paste under squeeze flow was more consistent with the experimental results from the viewpoint of power-law non-Newtonian fluid behavior than from the viewpoint of ductile yielding solid behavior in the strain-hardening region.

키워드

참고문헌

  1. F. J. Rubio-Hernandez, "Rheological Behavior of Fresh Cement Pastes," Fluids, Vol. 3, pp. 106-121, 2018. DOI: https://doi.org/10.3390/fluids3040106
  2. M. Yang, H. M. Jennings, “Influences of Mixing Methods on the Microstructure and Rheological Behavior of Cement Paste,” Advanced Cement Based Materials, Vol. 2, No. 2, pp. 70-78, Mar. 1995. DOI: https://doi.org/10.1016/1065-7355(95)90027-6
  3. W. G. Lei, L. J. Struble, "Microstructure and Flow Behavior of Fresh Cement Paste," J. American Ceramic Society, Vol. 80, pp. 2021-2028, 1997. DOI: https://doi.org/10.1111/j.1151-2916.1997.tb03086.x
  4. Q.Yuana, D.Zhoua, K. H. Khayat, D. Feys, C. Shi, "On the Measurement of Evolution of Structural Build-Up of Cement Paste with Time by Static Yield Stress Test vs. Small Amplitude," Cement and Concrete Research, Vol. 99, pp. 183-189, Sep. 2017. DOI: https://doi.org/10.1016/j.cemconres.2017.05.014
  5. B. H. Min, L. Erwin, H. M. Jennings, "Hysteresis Loops of Cement Paste Measured by Oscillatory Shear Experiments," The Koran Journal of Rheology, Vol. 5, No. 2, pp. 99-108, 1993.
  6. A. W. Saak, H.M. Jennings, S.P. Shah, "The Influence of Wall Slip on Yield Stress and Viscoelastic Measurements of Cement Paste," Cement and Concrete Research, Vol. 31, pp. 205-212, 2001. DOI: https://doi.org/10.1016/S0008-8846(00)00440-3
  7. A.Yahia, “Shear-Thickening Behavior of High-Performance Cement Grouts-Influencing Mix-Design Parameters,” Cement and Concrete Research, Vol. 41, No. 3, pp. 230-235, Mar. 2011. DOI: https://doi.org/10.1016/j.cemconres.2010.11.004
  8. J. J. Assaad, J. Harb, Y. Maalouf, "Measurement of Yield Stress of Cement Pastes using the Direct Shear Test," J. Non-Newtonian Fluid Mechanics, Vol. 214, pp. 18-27, Dec. 2014. http://www.elsevier.com/locate/jnnfmhttps://doi.org/10.1016/J.JNNFM.2014.10.009
  9. T. Conte, M. Chaouche, "Parallel Superposition Rheology of Cement Pastes," Cement and Concrete Composites, Vol. 104, pp. 103-110, Nov. 2019. DOI: https://doi.org/10.1016/j.cemconcomp.2019.103393
  10. B. H. Min, L. Erwin, H. M. Jennings, "Rheological Behavior of Fresh Cement Paste as Measured by Squeeze Flow," J. Materials Science, Vol. 29, pp. 1374-1381, 1994. DOI: https://doi.org/10.1007/BF00975091
  11. Z. Toutou, N. Roussel, C. Lanos, "The Squeezing Test: A Tool to Identify Firm Cement-Based Material's Rheological Behaviour and Evaluate Their Extrusion Ability," Cement and Concrete Research, Vol. 35, No. 10, pp. 1891-1899, 2005. DOI: https://doi.org/10.1016/j.cemconres.2004.09.007
  12. F. A. Cardoso, V. M. John, R. G. Pileggi, "Rheological Behavior of Mortars under Different Squeezing Rates," Cement and Concrete Research, Vol. 39, pp. 748-753, 2009. DOI: http://dx.doi.org/10.1016/j.cemconres.2009.05.014
  13. F. A. Cardoso, A. L. Fujii, R. G. Pileggi, M. Chaouche, "Parallel-Plate Rotational Rheometry of Cement Paste: Influence of the Squeeze Velocity during Gap Positioning," Cement and Concrete Research, Vol. 75, pp. 66-74, Sep. 2015. DOI: https://doi.org/10.1016/j.cemconres.2015.04.010
  14. A. Perrot, C. Lanos, P. Estelle, Y. Melinge, "Ram Extrusion Force for a Frictional Plastic Material: Model Prediction and Application to Cement Paste," Rheologica acta, Vol. 45, pp. 457-467, 2006. https://doi.org/10.1007/s00397-005-0074-y
  15. X. Zhou, Z. Li, M. Fan, H. Chen, "Rheology of Semi-Solid Fresh Cement Pastes and Mortars in Orifice Extrusion," Cement and Concrete Composites, Vol. 37, pp. 304-311, Mar. 2013. DOI: https://doi.org/10.1016/j.cemconcomp.2013.01.004
  16. J. H. Kim, S. H. Kwon, S. Kawashima, H. J. Yim, "Rheology of Cement Paste under High Pressure," Cement and Concrete Research, Vol. 77, pp. 60-67, Mar. 2017. DOI: http://lps3.doi.org.libproxy.deu.ac.kr/10.1016/j.cemco ncomp.2016.11.007
  17. O. M. Reales, P. Duda, E. Silva, M. M. Paiva, R. T. Filho, “Nano-Silica Particles as Structural Buildup Agents for 3D printing with Portland Cement Pastes,” Construction and Building Materials, Vol. 219, No. 20, pp. 91-100, Sep. 2019. DOI: http://lps3.doi.org.libproxy.deu.ac.kr/10.1016/j.conbuildmat.2019.05.174
  18. M. Chen, L. Li, J. Wang, Y. Huang, S. Wang, “Rheological Parameters and Building Time of 3D printing Sulpho Aluminate Cement Paste Modified by Retarder and Diatomite,” Construction and Building Materials, Vol. 234, No. 20, pp. 117-129, Feb. 2020. DOI: http://lps3.doi.org.libproxy.deu.ac.kr/10.1016/j.conbuildmat.2019.117391
  19. M. Nehdi, M. A. Rahman, “Estimating Rheological Properties of Cement Pastes using Various Rheological Models for Different Test Geometry, Gap and Surface Friction,” Cement and Concrete Research, Vol. 34, No. 11, pp. 1993-2007, Nov. 2004. DOI: http://dx.doi.org/10.1016/j.cemconres.2004.02.020
  20. J. Peng, D. Deng, Z. Liu, Q. Yuan, T. Ye, “Rheological Models for Fresh Cement Asphalt Paste,” Construction and Building Materials, Vol. 71, No. 30, pp. 254-262, Nov. 2014. DOI: https://doi.org/10.1016/J.CONBUILDMAT.2014.08.031
  21. B. I. Choi, J. H. Kim, T. Y. Shin, "Rheological Model Selection and a General Model for Evaluating the Viscosity and Microstructure of a Highly-Concentrated Cement Suspension," Cement and Concrete Research, Vol. 123, pp. 105-111, Sep. 2019. DOI: https://doi.org/10.1016/J.CEMCONRES.2019.05.020
  22. A. K. Jurowska, S. Grzeszczyk, M. Dziubinski, "Application of Multiple Step Change in Shear Rate Model for Determination of Thixotropic Behaviour of Cement Pastes," J. Building Engineering, Vol. 32, Nov. 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101494
  23. P. J. Leider, R. B. Bird, “Squeezing Flow between Parallel Disks. I. Theoretical Analysis,” Industrial Engineering Chemical Fundamentals, Vol. 13, No. 4, pp. 336-341, 1974. DOI: https://doi.org/10.1021/i160052a007
  24. P. Singh, V. Radhakrishnan, K. A. Narayan, "Squeezing Flow between Parallel Plates," Archive of Applied Mechanics, Vol. 60, pp. 274-281, 1990. DOI: http://dx.doi.org/10.1007/BF00577864
  25. J. Engmann, C. Servais, A. S. Burbidge, "Squeeze Flow Theory and Applications to Rheometry: A Review," J. Non-Newtonian Fluid Mechanics, Vol. 132, pp. 1-27, 2005. DOI: http://dx.doi.org/10.1016/j.jnnfm.2005.08.007
  26. V. S. Dixit, R. G. Narayanan, "Metal Forming: Technology and Process Modeling(Chapter 3)," pp. 147-153, McGraw Hill Education, USA, 2013.