DOI QR코드

DOI QR Code

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng (Key Laboratory of Molecular and Cytogenetics of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Tao, Nan (Key Laboratory of Molecular and Cytogenetics of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University) ;
  • Guo, Changhong (Key Laboratory of Molecular and Cytogenetics of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University)
  • Received : 2020.04.20
  • Accepted : 2020.08.18
  • Published : 2020.10.01

Abstract

Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

Keywords

References

  1. Al-Ani, R. A., Adhab, M. A., Mahdi, M. H. and Abood, H. M. 2012. Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protect. Sci. 48:149-155. https://doi.org/10.17221/16/2012-pps
  2. Aldon, D., Mbengue, M., Mazars, C. and Galaud, J.-P. 2018. Calcium signalling in plant biotic interactions. Int. J. Mol. Sci. 19:665. https://doi.org/10.3390/ijms19030665
  3. Aznar, A., Chen, N. W. G., Thomine, S. and Dellagi, A. 2015. Immunity to plant pathogens and iron homeostasis. Plant Sci. 240:90-97. https://doi.org/10.1016/j.plantsci.2015.08.022
  4. Bloem, E., Haneklaus, S. and Schnug, E. 2015. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Front. Plant Sci. 5:779. https://doi.org/10.3389/fpls.2014.00779
  5. Bollig, K., Specht, A., Myint, S. S., Zahn, M. and Horst, W. J. 2013. Sulphur supply impairs spread of Verticillium dahliae in tomato. Eur. J. Plant Pathol. 135:81-96. https://doi.org/10.1007/s10658-012-0067-5
  6. Chang, X., Dai, H., Wang, D., Zhou, H., He, W., Fu, Y., Ibrahim, F., Zhou, Y., Gong, G., Shang, J., Yang, J., Wu, X., Yong, T., Song, C. and Yang, W. 2018. Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. Eur. J. Plant Pathol. 151:563-577. https://doi.org/10.1007/s10658-017-1410-7
  7. Correll, J. C., Klittich, C. J. R. and Leslie, J. F. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77:1640-1646. https://doi.org/10.1094/Phyto-77-1640
  8. Datnoff, L. E., Elmer, W. H. and Huber, D. M. 2007. Mineral nutrition and plant disease. APS Press, St. Paul, MN, USA. 278 pp.
  9. Diaz Arias, M. M., Leandro, L. F. and Munkvold, G. P. 2013. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans. Phytopathology 103:822-832. https://doi.org/10.1094/PHYTO-08-12-0207-R
  10. Dordas, C. 2008. Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron. Sustain. Dev. 28:33-46. https://doi.org/10.1051/agro:2007051
  11. Fourcroy, P., Siso-Terraza, P., Sudre, D., Saviron, M., Reyt, G., Gaymard, F., Abadia, A., Abadia, J., Alvarez-Fernandez, A. and Briat, J.-F. 2014. Involvement of the ABCG37 transporter in secretion ofscopoletin and derivatives by Arabidopsis roots in response toiron deficiency. New Phytol. 201:155-167. https://doi.org/10.1111/nph.12471
  12. Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. and Chen, K. 2015. Magnesium stress signaling in plant: just a beginning. Plant Signal. Behav. 10:e992287. https://doi.org/10.4161/15592324.2014.992287
  13. Hoagland, D. R. and Arnon, D. I. 1938. Growing plants without soil by the water-culture method. Circ. Calif. Agric. Exp. Stn. 3:346-347.
  14. Hoffland, E., Jeger, M. J. and van Beusichem, M. L. 2000. Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil 218:239-247. https://doi.org/10.1023/A:1014960507981
  15. Huber, D. M. and Jones, J. B. 2012. The role of magnesium in plant disease. Plant Soil 368:73-85. https://doi.org/10.1007/s11104-012-1476-0
  16. Jorgensen, L. N., van den Bosch, F., Oliver, R. P., Heick, T. M. and Paveley, N. D. 2017. Targeting fungicide inputs according to need. Annu. Rev. Phytopathol. 55:181-203. https://doi.org/10.1146/annurev-phyto-080516-035357
  17. Kehr, J. 2013. Systemic regulation of mineral homeostasis by micro RNAs. Front. Plant Sci. 4:145. https://doi.org/10.3389/fpls.2013.00145
  18. Khan, M. I. R., Asgher, M., Iqbal, N. and Khan, N. A. 2013. Potentiality of sulphur-containing compounds in salt stress tolerance. In: Ecophysiology and responses of plants under salt stress, eds. by P. Ahmad, M. M. Azooz and M. N. V. Prasad, pp. 443-472. Springer-Verlag, New York, NY, USA.
  19. Leff, J. W., Jones, S. E., Prober, S. M., Barberan, A., Borer, E. T., Firn, J. L., Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops, J. M., McCulley, R. L., La Pierre, K., Risch, A. C., Seabloom, E. W., Schutz, M., Steenbock, C., Stevens, C. J. and Fierer, N. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. U. S. A. 112:10967-10972. https://doi.org/10.1073/pnas.1508382112
  20. Li, Y., Zhao, T., Hua, G. K. H., Xu, L., Liu, J., Li, S., Huang, H. and Ji, P. 2018. Pathogenicity and genetic diversity of Fusarium oxysporum causing soybean root rot in northeast China. J. Agric. Sci. 10:13-23. https://doi.org/10.5539/jas.v10n5p13
  21. Mur, L. A. J., Simpson, C., Kumari, A., Gupta, A. K. and Gupta, K. J. 2017. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 119:703-709.
  22. Reddy, A. R., Reddy, K. R., Padjung, R. and Hodges, H. F. 1996. Nitrogen nutrition and photosynthesis in leaves of Pima cotton. J. Plant Nutr. 19:755-770. https://doi.org/10.1080/01904169609365158
  23. Song, W. Y., Zhang, Z. B., Shao, H. B., Guo, X. L., Cao, H. X., Zhao, H. B., Fu, Z. Y. and Hu, X. J. 2008. Relationship between calcium decoding elements and plant abiotic-stress resistance. Int. J. Biol. Sci. 4:116-125.
  24. Thor, K. 2019. Calcium-nutrient and messenger. Front. Plant Sci. 10:440. https://doi.org/10.3389/fpls.2019.00440
  25. van Bruggen, A. H. C. and Finckh, M. R. 2016. Plant diseases and management approaches in organic farming systems. Annu. Rev. Phytopathol. 54:25-54. https://doi.org/10.1146/annurev-phyto-080615-100123
  26. van Esse, H. P., Reuber, T. L. and van der Does, D. 2020. Genetic modification to improve disease resistance in crops. New Phytol. 225:70-86. https://doi.org/10.1111/nph.15967
  27. van Loon, L. C. 2016. The intelligent behavior of plants. Trends Plant Sci. 21:286-294. https://doi.org/10.1016/j.tplants.2015.11.009
  28. Verbon, E. H., Trapet, P. L., Stringlis, I. A., Kruijs, S., Bakker, P. A. H. M. and Pieterse, C. M. J. 2017. Iron and immunity. Annu. Rev. Phytopathol. 55:355-375. https://doi.org/10.1146/annurev-phyto-080516-035537
  29. Walters, D. R. and Bingham, I. J. 2007. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann. Appl. Biol. 151:307-324. https://doi.org/10.1111/j.1744-7348.2007.00176.x
  30. Wang, M., Zheng, Q., Shen, Q. and Guo, S. 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14:7370-7390. https://doi.org/10.3390/ijms14047370
  31. Wrather, J. A. and Koenning, S. R. 2006. Estimates of disease effects on soybean yields in the United States 2003 to 2005. J. Nematol. 38:173-180.
  32. Zhang, J. X., Xue, A. G., Cober, E. R., Morrison, M. J., Zhang, H. J., Zhang, S. Z. and Gregorich, E. 2013. Prevalence, pathogenicity and cultivar resistance of Fusarium and Rhizoctonia species causing soybean root rot. Can. J. Plant Sci. 93:221-236. https://doi.org/10.4141/cjps2012-223
  33. Zhang, J. X., Xue, A. G., Zhang, H. J., Nagasawa, A. E. and Tambong, J. T. 2010. Response of soybean cultivars to root rot caused by Fusarium species. Can. J. Plant Sci. 90:767-776. https://doi.org/10.4141/CJPS09133