DOI QR코드

DOI QR Code

Characterization of a Strain of Malva Vein Clearing Virus in Alcea rosea via Deep Sequencing

  • Wang, Defu (College of Life Sciences, Shanxi Agricultural University) ;
  • Cui, Liyan (College of Grassland Science, Shanxi Agricultural University) ;
  • Pei, Yanni (College of Life Sciences, Shanxi Agricultural University) ;
  • Ma, Zhennan (College of Life Sciences, Shanxi Agricultural University) ;
  • Shen, Shaofei (College of Life Sciences, Shanxi Agricultural University) ;
  • Long, Dandan (College of Life Sciences, Shanxi Agricultural University) ;
  • Li, Lingyu (College of Life Sciences, Shanxi Agricultural University) ;
  • Niu, Yanbing (College of Life Sciences, Shanxi Agricultural University)
  • Received : 2020.07.14
  • Accepted : 2020.08.25
  • Published : 2020.10.01

Abstract

Malva vein clearing virus (MVCV) is a member of the Potyvirus species, and has a negative impact on the aesthetic development of Alcea rosea. It was first reported in Germany in 1957, but its complete genome sequence data are still scarce. In the present work, A. rosea leaves with vein-clearing and mosaic symptoms were sampled and analyzed with small RNA deep sequencing. By denovo assembly the raw sequences of virus-derived small interfering RNAs (vsiRs) and whole genome amplification of malva vein cleaning virus SX strain (MVCV-SX) by specific primers targeting identified contig gaps, the full-length genome sequences (9,645 nucleotides) of MVCV-SX were characterized, constituting of an open reading frame that is long enough to encode 3,096 amino acids. Phylogenetic analysis showed that MVCV-SX was clustered with euphorbia ringspot virus and yam mosaic virus. Further analyses of the vsiR profiles revealed that the most abundant MVCV-vsiRs were between 21 and 22 nucleotides in length and a strong bias was found for "A" and "U" at the 5′-terminal residue. The results of polarity assessment indicated that the amount of sense strand was almost equal to that of the antisense strand in MVCV-vsiRs, and the main hot-spot region in MVCV-SX genome was found at cylindrical inclusion. In conclusion, our findings could provide new insights into the RNA silencing-mediated host defence mechanism in A. rosea infected with MVCV-SX, and offer a basis for the prevention and treatment of this virus disease.

Keywords

References

  1. Abdel-Salam, A. M., El-Shazly, M. A. and Thouvenel, J. C. 1998. Biological, biochemical and serological studies on hollyhock leaf crumple virus (HLCrV): a newly discovered whitefly transmitted geminivirus. Arab J. Biotechnol. 1:41-58.
  2. Adams, M. J., Antoniw, J. F. and Beaudoin, F. 2005. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol. Plant Pathol. 6:471-487. https://doi.org/10.1111/j.1364-3703.2005.00296.x
  3. Bigarre, L., Chazly, M., Salah, M., Ibrahim, M., Padidam, M., Nicole, M., Peterschmitt, M., Fauquet, C. and Thouvenel, J. C. 2010. Characterization of a new begomovirus from Egypt infecting Hollyhock (Althea rosea). Eur. J. Plant Pathol. 107:701-711.
  4. Bouche, N., Lauressergues, D., Gasciolli, V. and Vaucheret, H. 2006. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 25:3347-3356. https://doi.org/10.1038/sj.emboj.7601217
  5. Bologna, N. G. and Voinnet, O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu. Rev. Plant Biol. 65:473-503. https://doi.org/10.1146/annurev-arplant-050213-035728
  6. Choi, E.-S., Cho, S.-D., Shin, J.-A., Kwon, K. H., Cho, N.-P. and Shim, J.-H. 2014. Althaea rosea Cavanil and Plantago major L. suppress neoplastic cell transformation through the inhibition of epidermal growth factor receptor kinase. Mol. Med. Rep. 6:843-847. https://doi.org/10.3892/mmr.2012.977
  7. Choi, S. K., Yoon, J. Y., Ryu, K. H., Choi, J. K. and Mok, W. M. 2002. First report of zucchini yellow mosaic virus on Hollyhock (Althaea rosea). Plant Pathol. J. 18:121-125. https://doi.org/10.5423/PPJ.2002.18.3.121
  8. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C. and Voinnet, O. 2006. Hierarchical action and inhibition of plant dicer-like proteins in antiviral defense. Science 313:68-71. https://doi.org/10.1126/science.1128214
  9. Fernandez, A., Guo, H. S., Saenz, P., Simon-Buela, L., Gomez de Cedron, M. and Garcia, J. A. 1997. The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res. 25:4474-4480. https://doi.org/10.1093/nar/25.22.4474
  10. Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J. and Carrington, J. C. 2010. Arabidopsis RNA-dependent RNA polymerases and dicerlike proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection. Plant Cell 22:481-496. https://doi.org/10.1105/tpc.109.073056
  11. Hein, A. 1959. Beitrage zur Kenntnis der Viruskrankheiten an Unkrautern. J. Phytopathol. 35:119-121. https://doi.org/10.1111/j.1439-0434.1959.tb01823.x
  12. Horvath, J., Mamula, D. J., Besada, W. H. and Juretic, N. 2010. Some properties of malva vein clearing virus isolated in Hungary and Yugoslavia. J. Phytopathol. 95:51-58. https://doi.org/10.1111/j.1439-0434.1979.tb01577.x
  13. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25
  14. Liu, F., Liu, W. and Tian, S. 2014. Artificial neural network optimization of Althaea rosea seeds polysaccharides and its antioxidant activity. Int. J. Biol. Macromol. 70:100-107. https://doi.org/10.1016/j.ijbiomac.2014.06.040
  15. Llave, C. 2010. Virus-derived small interfering RNAs at the core of plant virus interactions. Trends Plant Sci. 15:701-707. https://doi.org/10.1016/j.tplants.2010.09.001
  16. Lunello, P., Tourino, A., Nunez, Y., Ponz, F. and Sanchez, F. 2009. Genomic heterogeneity and host recovery of isolates of malva vein clearing virus. Virus Res. 140:91-97. https://doi.org/10.1016/j.virusres.2008.11.006
  17. Menzel, W., Winter, S. and Richert-Poggeler, K. R. 2010. First report of malva vein clearing virus naturally occurring in hollyhock in Germany. Plant Dis. 94:276.
  18. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. and Qi, Y. 2008. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5' terminal nucleotide. Cell 133:116-127. https://doi.org/10.1016/j.cell.2008.02.034
  19. Niu, Y., Pang, X., Wang, D., Guo, S. and Liu, Y. 2018. Deep sequencing analysis of a strain of pecan mosaic-associated virus infecting Atractylodes macrocephala Koidz. J. Plant Pathol. 100:249-255. https://doi.org/10.1007/s42161-018-0072-4
  20. Parrella, G., Nappo, A. G. and Delecolle, B. 2015. Cytopathology, biology and molecular characterization of two Italian isolates of malva vein clearing virus. Plant Sci. Today 2:69-73. https://doi.org/10.14719/pst.2015.2.2.114
  21. Rajamaki, M.-L., Streng, J. and Valkonen, J. P. T. 2014. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3. Mol. Plant-Microbe Interact. 27:1199-1210. https://doi.org/10.1094/MPMI-04-14-0109-R
  22. Srivastava, A., Kumar, S., Raj, S. K. and Pande, S. S. 2014. Association of a distinct strain of hollyhock yellow vein mosaic virus and Ludwigia leaf distortion betasatellite with yellow vein mosaic disease of hollyhock (Alcea rosea) in India. Arch. Virol. 159:2711-2715. https://doi.org/10.1007/s00705-014-2108-1
  23. Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V. and Gal-On, A. 2007. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J. Virol. 819:13135-13148.
  24. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M. and Watanabe, Y. 2008. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol. 49:493-500. https://doi.org/10.1093/pcp/pcn043
  26. Venkataravanappa, V., Lakshminarayana Reddy, C. N., Devaraju, A., Jalali, S. and Reddy, M. K. 2013. Association of a recombinant cotton leaf curl Bangalore virus with yellow vein and leaf curl disease of okra in India. Virus Dis. 24:188-198.
  27. Xia, Z., Peng, J., Li, Y., Chen, L., Li, S., Zhou, T. and Fan, Z. 2014. Characterization of small interfering RNAs derived from sugarcane mosaic virus in infected maize plants by deep sequencing. PLoS ONE 9: e97013. https://doi.org/10.1371/journal.pone.0097013
  28. Yang, F., Niu, E. B., Wang, D. F. and Niu, Y. B. 2017. Sequence analysis of CP gene of malva vein clearing virus Althaea rosea isolates in China. Acta Phytopathol. Sin. 47:458-462.
  29. Zerbino, D. R. and Birney, E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821-829. https://doi.org/10.1101/gr.074492.107
  30. Zhang, Y., Jin, L., Chen, Q., Wu, Z., Dong, Y., Han, L. and Wang, T. 2015 . Hypoglycemic activity evaluation and chemical study on hollyhock flowers. Fitoterapia 102:7-14. https://doi.org/10.1016/j.fitote.2015.02.001
  31. Zhang, X., Zhang, X., Singh, J., Li, D. and Qu, F. 2012. Temperature-dependent survival of turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J. Virol. 86:6847-6854. https://doi.org/10.1128/JVI.00497-12