DOI QR코드

DOI QR Code

A Study for Perception of Hair Damage Using Friction Coefficient of Human Hair

모발의 마찰계수를 통한 모발 손상 인식 연구

  • Received : 2020.07.23
  • Accepted : 2020.09.15
  • Published : 2020.09.30

Abstract

Treatment for beauty using oxidizing agents damages hair with inducing structural alteration in cuticle layer, degradation of protein, and loss of lipid. This study connects a frictional coefficient upon the damaged hair by an instrumental test to the texture test by human being, and considered a moisture as a factor of the damage. A friction coefficient has been measured upon the hair with successive treatment of dye, perm, and bleach. The friction coefficient from the hair dye-treated three times was defined with 0.60, where 58% of answerer indicated an initial damage point as the hairs of iteration of dye-treatment increased. Even bleach treated three times results in 0.84 of friction coefficient corresponding to 88% of answerer attributed the hair to an initially damaged hair. In order to figure out a lipid loss in hair for human being to respond damage, a friction coefficient of the hair was controlled by removing 18-methyleicosanoic acid (18-MEA). The initial damage has been recognized by 0.60 of the friction coefficient for the 68% of answerer. Since moisture is the largest portion of the components in hair, moisture analysis has been performed to study a relationship between texture of damage and the friction coefficient from an instrumental evaluation. As an iteration of dye increases, the hair became hydrophilic with smaller contact angle. It is found that a damaged hair by dyeing possessed more than 0.42% of moisture compared to a healthy hair. Finally, it is elucidated that an increase of moisture in hair induced higher adhesive force corresponding to the friction coefficient, and the friction coefficient above 0.6 is attributed to the preception of hair damage.

염색과 같이 산화제를 이용한 미용은 모발의 큐티클 구조를 바꾸거나 단백질 변성 및 지질의 소실을 야기하여 모발을 손상시킨다. 본 연구에서는 모발 손상 변화를 기기 평가를 통해 마찰계수를 측정하고 이것이 소비자들의 손상 인지와 상관성이 있는지 알아보고, 더 나아가 손상 원인을 수분 변화에서 찾아 분석 하였다. 염색, 펌, 탈색 과정을 모발에 반복할 때 마찰계수를 측정한 결과 염색의 경우는 3 회 처리에서 마찰계수 0.60을 기록했는데, 일반인들을 대상으로 동일 모발에 대한 촉감에 의한 손상 인지 조사에서 응답자의 58%가 이 모발에서 처음으로 손상을 인지한다고 답하였다. 탈색의 경우 3 회 처리에서 마찰계수가 0.84 로 크게 변하였는데 응답자의 88%가 손상모로 인지하였다. 지질 소실을 통한 손상에 따른 인지를 알아보기 위하여 모발 표면의 18-methyleicosanoic acid (18-MEA)를 제거해가며 마찰계수를 인위적으로 높인 다양한 모발을 제작하였다. 이 경우 마찰계수가 0.60 인 모발부터 전체 응답자의 68%가 최초로 손상을 인식한다고 답하였다. 기기평가로 확인된 마찰계수와 이와 연관되는 손상 인지가 모발에서 가장 많은 양을 차지하는 수분으로부터 기여되는지 확인하기 위하여 손상모의 수분함량을 측정하였다. 염색 처리 횟수가 증가할수록 모발의 접촉각이 감소하며 모발이 친수성으로 변함을 확인하였는데, 실제로 염색 손상모가 건강한 모발보다 0.42% 더 많은 수분량을 가짐을 유의차 있게 확인하였다. 최종적으로는 손상 모발의 수분량 증가가 마찰계수와 비례하는 점착력 증가를 유도하며 마찰계수가 0.60 이상으로 증가할 때 손상 인지가 됨을 알아보았다.

Keywords

References

  1. C. R. Robbins, Chemical and physical behavior of human hair, Ed C. R. Robbins, 94, Springer, Heidelberg (2012).
  2. M. L. Tate, Y. K. Kamath, S. B. Ruetsch, and H. D. Weigmann, Quantification and prevention of hair damage, J. Soc. Cosmet. Chem., 44, 347, (1993).
  3. E. Fernandez, C. Barba, C. Alonso, M. Marti, J. L. Parra, and L. Coderch. Photodamage determination of human hair, J. Photochem. Photobiol. B, Biol., 106, 101 (2012). https://doi.org/10.1016/j.jphotobiol.2011.10.011
  4. I. P. Seshadri and B. Bhushan, In situ tensile deformation characterization of human hair with atomic force microscopy, Acta Mater., 56(4), 774, (2008). https://doi.org/10.1016/j.actamat.2007.10.033
  5. J. L. Bantignies, G. L. Carr, D. Lutz, S. Marull, G. P. Wiliams, G. Fuchs, Chemical imaging of hair by infrared microspectroscopy using synchroton radiation, J. Cosmet. Sci., 51, 73 (2000).
  6. E. Fernandez, C. Barba, C. Alonso, M. Marti, J. L. Parra, L. Coderch, Photodamage determination of human hair, J. Photochem. Photobiol. B, Biol., 106, 101 (2012). https://doi.org/10.1016/j.jphotobiol.2011.10.011
  7. W. Boucsein, F. Schaefer, M. Kefel, and P. Busch, W. Eisfeld. Objective emotional assessment of tactile hair properties and their modulation by different product worlds, Int J Cosmet Sci, 24(3), 135 (2002). https://doi.org/10.1046/j.1467-2494.2002.00129.x
  8. A. Galliano, J. Y. Kempf, M. Fougere, M. Applebaum, L. J. Wolfram, and H. Maibach, Comparing touch senses of naive and expert panels through treated hair swatches: which associated wordings correlate with hair physical properties?, Int J Cosmet Sci, 39(6), 653, (2017). https://doi.org/10.1111/ics.12428
  9. S. Bouabbache, A. Galliano, P. Littaye, M. Leportier, F. Pouradier, E. Gillot, S. Panhard, G. Loussouarn. What is a caucasian 'fine' hair? comparing instrumental measurements, self-perceptions and assessments from hair experts, Int. J. Cosmet. Sci., 38(6), 581, (2016). https://doi.org/10.1111/ics.12323
  10. C. Robbins, P. Mirmirani, A. G. Messenger, M. P. Birch, R. S. Youngquist, M. Tamura, T. Filloon, F. Luo. What women want - quantififying the perception of hair amount: an analysis of hair diameter and density changes with age in caucasian women, Br. J. Dermatol., 167(2), 324, (2012). https://doi.org/10.1111/j.1365-2133.2012.11010.x
  11. M. Ezure, N. Tanji, Y. Nishita, T. Mizooku, S. Nagase, T. Osumi, The secrets of beautiful hair: why is it flexible and elastic?, Cosmetics., 6(3), 40, (2019). https://doi.org/10.3390/cosmetics6030040
  12. M. L. Tate, Y. K. Kamath, S. B. Ruetsch, H. -D. Weigmann. Quantification and prevention of hair damage, J. Soc. Cosmet. Chem., 44, 347, (1993).
  13. H. Tanamachi, S. Tokunaga, N. Tanji, M. Oguri, and S. Inoue, 18-MEA and hair appearance, J. Cosmet. Sci., 61(2), 147 (2010).
  14. Y. Masukawa, H. Tsujimura, H. Tanamachi, H. Narita, G. Imokaw, Damage to human hair caused by repeated bleaching combined with daily weathering during daily life activities. Exog Dermatol., 3, 273 (2004). https://doi.org/10.1159/000091908
  15. S. Hilterhaus-bong, H. Zahn, Contributions to the chemistry of human hair: II. Lipid chemical aspects of permanently waved hair, Int. J. Cosmet. Sci., 11(4), 167, (1989). https://doi.org/10.1111/j.1467-2494.1989.tb00506.x
  16. J. T. Guthrie, A. Kazlauciunas, L. Rongong, S. Rush, The characterisation of treated and dyed hair. Dyes Pigm., 29(1), 23 (1995). https://doi.org/10.1016/0143-7208(95)00021-7
  17. R. A. Lodge, B. Bhushan, Wetting properties of human hair by means of dynamic contact angle measurement, J. Appl. Polym. Sci., 102(6), 5255 (2006). https://doi.org/10.1002/app.24774
  18. F. M. Maddar, D. Perry, R. Brooks, A. Page, P. R. Unwin, Nanoscale surface charge visualization of human hair, Anal. Chem., 91(7), 4632, (2019). https://doi.org/10.1021/acs.analchem.8b05977
  19. S. H . Song, B. T . Li m, S . K. S on, a nd N . Kang, Prevention of protein loss using a shield coating according to moisture behavior in human hair, J. Soc. Cosmet. Sci. Korea, 46(1), 57, (2020). https://doi.org/10.15230/SCSK.2020.46.1.57
  20. Y. Lee, Y. Kim, H. Hyun, L. Pi, X. Jin, and W. S. Lee, Hair shaft damage from heat and drying time of hair dryer, Ann Dermatol, 23(4), 455 (2011). https://doi.org/10.5021/ad.2011.23.4.455
  21. R. Crawford, C. R. Robbins, J. Curran, and K. Chesney, A hysteresis in heat dried hair, J. Soc. Cosmet. Chem., 32(1), 27 (1981).
  22. D. Gandyra, S. Walheim, S. Gorb, W. Barthlott, and T. Schimmel, The Capillary adhension technique : a versatile method for determining the liquid adhesion force and sample stifness, Beilstein J Nanotechnol, 6, 11 (2015). https://doi.org/10.3762/bjnano.6.2