DOI QR코드

DOI QR Code

Interaction of Rare Earth Chloride Salts to Alumina and Mullite in LiCl-KCl at 773 K

  • Received : 2019.11.27
  • Accepted : 2020.05.14
  • Published : 2020.09.30

Abstract

Two commonly used ceramics in molten salt research are alumina and mullite. The two ceramics were exposed to a combination of rare earth chlorides (YCl3, SmCl3, NdCl3, PrCl3, and CeCl3; each rare earth chloride of 1.8 weight percent) in LiCl-KCl at 773 K for approximately 13 days. Scanning electron microscopy with wave dispersion spectra was utilized to investigate a formation layer or deposition of rare earths onto the ceramic. Only the major constituents of the ceramics (Al, Si, and O2) were observed during the wave dispersion spectra. X-ray fluorescence was used as well to determine concentration changes in the molten salt as a function of ceramic exposure time. This study shows no evidence of ionic exchange or layer formation between the ceramics and molten chloride salt mixture. There are signs of surface tension effects of molten salt moving out of the tantalum crucible into secondary containment.

Keywords

References

  1. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of Pyroprocessing Technology", Prog. Nucl. Energy., 31, 131-140 (1997). https://doi.org/10.1016/0149-1970(96)00007-8
  2. E.Y. Choi and S.M. Jeong, "Electrochemical Processing of Spent Nuclear Fuels: An Overview of Oxide Reduction in Pyroprocessing Technology", Pro. Nat. Sci., 25, 572-582 (2015). https://doi.org/10.1016/j.pnsc.2015.11.001
  3. H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43, 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  4. H. Lee, G.I. Park, J.W. Lee, K.H. Kang, J.M. Hur, and I.J. Cho, "Current Status of Pyroprocessing Development at KAERI", Sci. Technol. Nucl. Ins., 2013 (2013).
  5. J.H. Yoo, C.S. Seo, E.H. Kim, and H.S. Lee, "A Conceptual Study of Pyroprocessing for Recovering Actinides from Spent Oxide Fuels", Nucl. Eng. Technol., 40, 581-592 (2008). https://doi.org/10.5516/NET.2008.40.7.581
  6. H. Ohta, T. Inoue, Y. Sakamura, and K. Kinoshita, "Pyroprocessing of Light Water Reactor Spent Fuels Based on a Electrochemical Reduction Technology", Nucl. Technol., 150, 153-161 (2005). https://doi.org/10.13182/NT05-A3613
  7. K. Nagarajan, B.P. Reddy, S. Ghosh, G. Ravisankar, K.S. Mohandas, and P.V. Rao, "Development of Pyrochemical Reprocessing for Spent Metal Fuels", Energy Procedia, 7, 431-436 (2011). https://doi.org/10.1016/j.egypro.2011.06.057
  8. T. Satoh, T. Iwai, and Y. Arai, "Electrolysis of Burnup-Simulated Uranium Nitride Fuels in LiCl-KCl Eutectic Melts", J. Nucl. Sci. Technol., 6, 557-563 (2009). https://doi.org/10.1080/18811248.1969.9732949
  9. S. Li, X. Sofu, T. Johnson, and D.V. Laug, "Experimental Observations on Electrorefining Spent Nuclear Fuel in Molten LiCl-KCl/liquid Cadmium System", J. New Mat. Electrochem. Sys., 3, 259-268 (2000).
  10. T. Kobayashi, R. Fujita, M. Fujie, and T. Koyama, "Polarization Effects in the Molten Salt Electrorefining of Spent Nuclear Fuel", J. Nucl. Sci. Technol., 32, 653-663 (1995). https://doi.org/10.1080/18811248.1995.9731756
  11. C.C. McPheeters, E.C. Gay, E.J. Karell, and J.P. Ackerman, "Electrometallurgically Treated Metal, Oxide and Al Alloy Spent Nuclear Fuel Types", J. Mater., 49, 22-25 (1997).
  12. S.X. Li, T.A. Johnson, B.R. Westphal, K.M. Goff, and R.W. Benedict, "Electrorefining Experience for Pyrochemical Reprocessing of Spent EBR-II Driver Fuel", Proc. of Global 2005, INL/CON-05-00305, October 9-13, 2005, Tsukuba, Japan.
  13. R.G. Lewin and M.T. Harrision, "International Developments in Electrorefining Technologies for Pyrochemical Processing of Spent Nuclear Fuels", Reproc. Recycl. Spent Nucl. Fuel, 1, 373-413 (2015).
  14. T. Koyama, R. Fujita, M. Hzuka, and Y. Sumida, "Pyrometallurgical Reprocessing of Fast Reactor Metallic Fuel-Development of a New Electrorefiner with a Ceramic Partition", Nucl. Technol., 110, 357-368 (1995). https://doi.org/10.13182/NT95-A35107
  15. J.H. Lee, Y.H. Kang, S.C. Hwang, E.H. Yoo, and H.S. Park, "Separation Characteristics of a Spent Fuel Surrogate in the molten Salt Electrorefining Process", J. Mater. Process Technol., 189, 268-272 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.034
  16. P. Soucek, T. Murakami, B. Claux, R. Meier, R. Malmbeck, and J.P. Glatz, "Separation of Actinides from Irradiated An-Zr Based Fuel by Electrorefining on Solid Aluminum Cathodes in Molten LiCl-KCl", J. Nucl. Mater., 459, 114-121 (2015). https://doi.org/10.1016/j.jnucmat.2014.12.103
  17. K.M. Goff, J.C. Wass, K.C. Marsden, and G.M. Teske, "Electrochemical Processing of Used Nuclear Fuel", Nucl. Eng. Technol., 43, 335-342 (2011). https://doi.org/10.5516/NET.2011.43.4.335
  18. H.E. Garcia, M.J. Lineberry, S.E. Aumeier, and H.F. McFarlane, "Proliferation Resistance of Advanced Sustainable Nuclear Fuel Cycles", Nucl. Plant J., 20, 18-27 (2002).
  19. W. Zhou, Y. Wang, and J. Zhang, "Integrated Model Development for Safeguarding Pyroprocessing Facility: Part II-Case Studies and Models Integrations", Ann. Nucl. Energy, 112, 48-61 (2018). https://doi.org/10.1016/j.anucene.2017.09.036
  20. K.M. Goff, R.D. Mariani, D. Vaden, N.L. Bonomo, and S.S. Cunningham, "Fuel Conditioning Facility Electrorefiner Start-Up Results", Proc. of the 1996 Annual meeting of the American Nuclear Society, ANL--TD/CP-89649, June 16-20, 1996, Reno, United States.
  21. T.Y. Gutnecht, G.L. Fredrickson, and V. Utgikar. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel, Idaho National Laboratory Technical Report, INL/EXT-11-23511 (2012).
  22. H.A. Laitinen and C.H. Liu, "An Electromotive Force Series in Molten Lithium Chloride-Potassium Chloride Eutectic", J. Am. Chem. Soc., 80(5), 1015-1020 (1958). https://doi.org/10.1021/ja01538a001
  23. Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, and R.L. Gay, "Measurement of Standard Potentials of Actinides (U, Np, Pu, Am) in LiCl-KCl Eutectic Salt and Separation of Actinides from Rare Earths by Electrorefining", J. Alloys Compd., 271, 592-596 (1998).
  24. S.A. Slater, A.G. Raraz, J.L. Willit, and E.C. Gay, "Electrochemical Separation of Aluminum from Uranium for Research Reactor Spent Nuclear Fuel Applications", Sep. Purif. Technol., 15, 197-205 (1999). https://doi.org/10.1016/S1383-5866(98)00101-4
  25. A.V. Novoselova and V.V. Smolenskii, "Electrochemical and Thermodynamic Properties of Lanthanides (Nd, Sm, Eu, Tm, Yb) in Alkali Metal Chloride Metals", Radiochemistry, 55, 243-256 (2013). https://doi.org/10.1134/S1066362213030016
  26. S.A. Kuznetsov and M. Gaune-Escard, "Electrochemical Transient Techniques for Study of the Electrochemistry and Thermodynamics of Nuclear Materials in Molten Salts", J. Nucl. Mater., 15, 108-114 (2009).
  27. A.R. Shankar and U.K. Mudali, "Corrosion of Type 316L Stainless Steel in Molten LiCl-KCl Salt", Mater. Corros., 59, 878-882 (2008). https://doi.org/10.1002/maco.200804177
  28. J.H. Sim, Y.S. Kim, and I.J. Cho, "Corrosion Behavior Induced by LiCl-KCl in Type 304 and 316 Stainless Steel and Copper at Low Temperature", Nucl. Eng. Technol., 49, 769-775 (2017). https://doi.org/10.1016/j.net.2017.02.007
  29. M. Hofmeister, L. Klein, H. Miran, R. Rettig, S. Virtanes, and R.F. Singer, "Corrosion Behavior of Stainless Steels and a Single Crystal Superalloy in a Ternary LiCl-KCl-CsCl Molten Salt", Corros. Sci., 90, 46-53 (2015). https://doi.org/10.1016/j.corsci.2014.09.009
  30. A.R. Shankar, U.K. Mudali, R. Sole, H.S. Khatak, and B. Raj, "Plasma-Sprayed Yttria-Stabilized Zirconia Coatings on Type 316L Stainless Steel for Pyrochemical Reprocessing Plant", J. Nucl. Mater., 372, 226-232 (2008). https://doi.org/10.1016/j.jnucmat.2007.03.175
  31. A.R. Shankar, K. Thyagarajan, and U.K. Mudali, "Corrosion Behavior of Candidate Materials in Molten LiCl-KCl Salt Under Argon Atmosphere", Corrosion, 69(7), 655-665 (2013). https://doi.org/10.5006/0746
  32. H. C. Eun, Y.Z. Cho, H.S. Park, T.K. Lee, I.T. Kim, K.I. Park, and H.S. Lee, "Study on a Recovery of Rare Earth Oxides from a $LiCl-KCl-RECl_3$ System", J. Nucl. Mater., 1, 110-115 (2011).
  33. H.C. Eun, H.C. Yang, Y.Z. Cho, H.S. Lee, and I.T. Kim, "Vacuum Distillation of a mixture of LiCl-KCl Eutectic Salts and RE Oxidation Precipitates and a Dechlorination of RE Oxychlorides", J. Hazard. Mater., 160, 634-637 (2008). https://doi.org/10.1016/j.jhazmat.2008.03.079
  34. Y.Z. Cho, H.C. Yang, G.H. Park, H.S. Lee, and I.T. Kim, "Treatment of a Waste Salt Delivered from an Electrorefining Process by an Oxidative Precipitation of the Rare Earth Elements", J. Nucl. Mater., 3, 256-261 (2009).